
Concept - “the” Application Server

Edi “Concept” Suica

February 10, 2016

ii

Preface

Sometimes I’ll start a sentence, and I don’t even know where
it’s going. I just hope I find it along the way - Michael Scott

About 10 years ago I have started a fun little project - a programming
language that breaks the application into user interface and cloud core,
enabling you to create on-line applications just like creating any other
desktop application. That little project grew into a complete environment
for creating, deploying, and managing enterprise applications. I then
realized that this powerful technology is impossible to use for everyone else
except me, by lack of documentation. I’ve decided to explain, as simple as
possible, how it works and how you can write powerful cloud applications
using Concept Programming Language, Concept Framework and all the
tools.
You will find real life examples based on commercial solutions implemented
by me for different businesses, covering CRMs, ERPs and VoIP
applications. I will take you from the basic “hello world” to advanced
applications, covering everything, from programming language to
framework and advanced mobile applications.
This being said, I hope you are or will become “classy” programmer, who
knows that providing a solution isn’t enough if it isn’t optimal and elegant.

Contents

I Concept Application Server 1

1 Architecture 3

1.1 The server . 5

1.2 Concept protocol . 6

1.3 Security . 9

1.4 Core . 9

1.5 Concept Assembly . 10

1.6 Garbage collector and smart data linking 11

1.7 JIT compiler . 12

1.8 Modules . 13

1.9 Supported platforms . 17

2 The client 19

2.1 Workstations . 20

2.2 Mobile devices . 22

2.3 Web browsers . 22

iii

iv CONTENTS

3 Developer tools 25

3.1 Concept IDE . 25

3.2 Application deployment . 26

II Concept Programming 29

4 Language 31

4.1 Hello world . 32

4.2 Hello world from between the clouds 34

4.3 Data types . 35

4.3.1 Numbers . 36

4.3.2 Strings . 38

4.3.3 Arrays . 41

4.3.4 Objects . 44

4.3.5 Delegates . 45

4.4 Unary operators . 47

4.5 Binary operators . 53

4.6 Loops and conditions . 58

4.7 Exceptions . 65

4.8 Include and import . 67

5 Classes and objects 69

5.1 Member variables . 70

5.2 Function members . 71

CONTENTS v

5.3 Constructor and destructor 73

5.4 Properties . 74

5.5 Access control . 75

5.6 Static members . 77

5.7 Virtual members and overriding 78

5.8 Operator overloading . 81

5.9 Duck typing . 83

5.10 Inheritance - simple and multiple 85

5.11 Anonymous functions . 87

6 Static functions 91

6.1 Mapping a simple C function 96

6.2 Working with arrays . 99

6.3 Working with objects . 101

7 Coding guidelines 105

7.1 Indentation suggestions . 105

7.2 Variable and member naming 109

7.3 Circular references . 110

7.4 Love your code . 110

III Concept Framework 113

8 Cloud UI application architecture 117

8.1 Base objects . 117

vi CONTENTS

8.2 Relative layouts . 125

8.3 MDI with notebooks . 132

8.4 Text fields . 134

8.5 Buttons . 138

8.6 Images . 141

8.7 Menus and tool bars . 144

8.8 Tree views, list views and combo boxes 151

8.9 Web views . 166

8.10 Clipboard . 167

8.11 Language and localization . 171

8.12 Latency compensation . 173

8.13 Asynchronous UI processing 176

9 Basic I/O 181

9.1 XML serialization . 181

9.2 JSON serialization . 188

9.3 Binarization . 192

9.4 Compression . 196

9.5 Files . 197

9.6 Listing directories . 201

9.7 File system . 202

9.8 Configuration files . 204

9.9 Pipes . 206

9.10 Remote files . 209

CONTENTS vii

9.11 CSV files . 211

9.12 Archive files . 213

9.13 OCR . 214

9.14 XML manipulation . 217

9.15 XSLT and XSL-FO . 222

9.16 Classic web application basics 228

9.17 Inter-application message exchange 235

9.18 String and time functions . 238

9.19 Spell check and phonetics . 242

9.20 Math . 247

9.21 Serial ports . 251

10 Supported databases 253

10.1 Database interface . 253

10.2 PostgreSQL . 260

10.3 SQLite . 264

10.4 MySQL . 268

10.5 Firebird . 271

10.6 ODBC . 275

10.7 NuoDB . 280

10.8 MongoDB . 281

10.9 dBase files . 286

10.10Memcached . 289

10.11Natural searches with Xapian 292

viii CONTENTS

11 Sockets and networking 297

11.1 TCP/IP sockets . 297

11.2 UDP sockets . 303

11.3 UNIX sockets . 306

11.4 Multicast sockets . 309

11.5 SSL/TLS communications . 315

11.6 Bluetooth sockets . 319

11.7 Cryptographic functions . 325

11.8 High level protocols . 333

11.9 SSH protocol . 340

11.10DNS and GeoIP . 343

11.11SNMP and network management 345

11.12Virtualization client . 353

11.13OAuth 2.0 and social media 358

11.14Upgrading concept:// to TLS/SSLv3 365

12 Multi-threading 371

12.1 Multi-threading and core limitations 372

12.2 Semaphores . 377

12.3 Green threads . 380

12.4 Workers . 386

12.5 Parallel computing using GPU 391

13 Media, voice over IP and telephony 397

CONTENTS ix

13.1 Codecs . 398

13.2 Telephony and SIP integration 403

13.3 Digital rights management . 413

13.4 Image and video processing 415

13.5 Face detection . 424

13.6 H.264 video support . 427

14 Performance 435

14.1 Optimal loops . 436

14.2 Optimize memory usage . 442

14.3 JIT-friendly code . 444

14.4 Profiler . 448

14.5 Comparison with other platforms 451

IV Real applications 457

15 Problems and solutions 459

15.1 HR application basics . 462

15.2 Telco billing basics . 469

15.3 User tracking application . 474

16 GyroGears - the CAS application generator 479

16.1 What is GyroGears and why use it 479

16.2 Applications, entities and members 483

16.3 High level APIs . 508

x CONTENTS

16.4 High-level data types . 522

16.4.1 Short string . 523

16.4.2 Long string . 524

16.4.3 Secret field . 525

16.4.4 Integer . 525

16.4.5 Decimal . 525

16.4.6 Date/time . 526

16.4.7 File . 526

16.4.8 Boolean . 527

16.4.9 Choose radio . 527

16.4.10 Choose combo . 527

16.4.11 Picture . 528

16.4.12 Multimedia . 528

16.4.13 Custom function . 530

16.4.14 Direct query . 531

16.4.15 Relation . 531

16.4.16 Reference . 534

16.4.17 Non homogeneous relation 535

16.5 Plug-ins . 536

16.6 Conditional data . 540

16.7 Custom actions . 542

16.8 Advanced reports . 545

16.9 Sub-applications . 556

CONTENTS xi

16.10Applications diagrams . 557

16.11Touch screens . 559

16.12Phone and tablet interface . 559

16.13Application .ini files . 563

16.14Data migration . 564

16.15Web interface . 565

xii CONTENTS

Part I

Concept Application Server

1

Chapter 1

Architecture

3

4 CHAPTER 1. ARCHITECTURE

Concept Application Server (CAS) splits the application into the business
part and the interface thin-client. The business part is in fact the
application, with unlimited number of interfaces. The business part
communicates with the thin client (called Concept Client) by using the
Concept data secured protocol. The synchronization is achieved by using a
messaging service able to exchange messages both over the cloud (Internet)
and over the server itself. No piece of Concept code will be executed on the
client, but all the events and user data input will be done with the client.

Concept Application Server has a relatively small resemblance with the
traditional HTTP servers, because instead of typical “touch and go”
scripts (a script is run for every user event), the application is always
active ensuring a better end-user experience. Can be regarded as a
bi-directional protocol while HTTP is request-based (unidirectional).

CAS comes with three additional services in order to ensure full efficiency
for enterprise applications.

Concept CGI
in order to create Web 2.0 applications

Concept CLI
command line interpreter

Concept Services
support for background tasks that may run without an explicit call
from a user

From the developer’s point of view, this technology can create complex
on-line software with minimum effort. Every single GUI Concept
Application runs on-line. Also, it is able to integrate with the typical
browser, in order to run applications by simply typing the address.

eg:
concept://devronium.com/HelloWorld/HelloWorld.con

1.1. THE SERVER 5

1.1 The server

The Concept Application Server process runs as conceptserver on
Unix-derivate operating systems or as concept-server.exe on MS Windows.
Starting with Concept 4.0, the server is written in Concept, running as
ConceptServer.con both on *nix and Windows. By default it listens on
TCP port 2662 (CONC on a phone keypad). It manages the protocol
negotiation (secure key-exchange) where a client makes a request, and
creates a separate user process (called runsafe).

It can be configured by editing concept.ini located in Program
Files/Concept/Bin or /usr/local/etc, depending on the operating system.
All the paths in the .ini file are relative to the concept server executable.

You may want to change some of them, for example:

ServerRoot
default server root (eg: ServerRoot=”../Public”)

HostRoot(host)
host root for a specific host (eg: HostRoot(127.0.0.1)=”../Samples”)

Port
the port used by the server (default 2662)

IPv6
set to 1 if you want the server to accept IPv6 connections

Interface
interface to listen on (if not set, will accept connections on any
interface)

User
the user under which the server will run

MaxConnection
the maximum number of connections

MaxInitialIDLE
the protocol negotiation timeout

UseSharedMemoryPool
set to 1 if you want for the server to use shared memory pools

6 CHAPTER 1. ARCHITECTURE

The shared pool reduces the memory usage of the server, by using the
same space to store the code of different instances of the same application.

The server operates an inter-application message queue, that enables
multiple instances of the same application to communicate with each other.

As of version 2.6, the server is capable of restoring dropped connection, for
example when the user switches from a network connection to another,
without closing the application. This is especially useful in mobile
applications, when the users switches from cell network to WiFi.

1.2 Concept protocol

CAS uses a total of 4 protocols:

concept://
default protocol

concepts://
secured protocol

http(s)://
http as a transport layer for concept:// packets (deprecated in
Concept Client 3.0)

http(s):// + websocket
websocket used as a transport layer for concept packets (new in
Concept Client 4.0)

Everything starts with a protocol negotiation. The server sends a public
key(RSA), the client generates a random AES 128-256 key and sends it to
the server. The server uses the private key to decrypt the key, and then we
have a symmetric secured channel. After the negotiation, the client request
the run of a specific application, for example:

run CIDE/cide.con

The server then runs the application and creates an isolated process. The
communication is based on the exchange of messages based on four

1.2. CONCEPT PROTOCOL 7

parameters: Sender(string), MessageID(integer), Target(string),
Value(string). At this point the protocol is entirely binary, and based on
message exchange that have the following structure:

Bytes 4 1 o size 4 2 t size
message size o size owner message t size target value

Let’s say the server wants to get the text in an edit box on the client
screen:

name = editName.Text;

This is what is actually executing (low-level):

SendMessage(editName.ID, MSG_GET_PROPERTY, P_TEXT, "");

WaitMessage(editName.ID, MSG_GET_PROPERTY, P_TEXT, name);

When using concept secured protocol, the messages are encrypted using
the shared AES key.

http protocol is used as an alternative, when running on unstable
connections or on networks providing only http connectivity(figure 1.1).

Note that a standard concept:// connection can be at any time upgraded
to a SSL/TLS connection via the UpgradeTLS API discussed later in this
book.

Stating with Concept 4.0 (in BETA when writing this book), websockets
are now supported. This is useful when using the Concept Client 4.0 JS
client, supported in major modern browsers: Firefox, Chrome, Internet
Explorer 11, Safari and any webkit-based browser. By default, the
Concept Server listens on port 2680, and any application, may be opened
directly in browser. If, for example, one would want to run
concept://localhost/MyProjects/TestApp/TestApp.con directly in a
browser, should simply type
http://localhost:2680/MyProjects/TestApp/TestApp.con in the address
bar.

8 CHAPTER 1. ARCHITECTURE

Figure 1.1:

1.3. SECURITY 9

1.3 Security

The concept cryptographic system uses RSA keys for initial protocol
negotiation, then switches to AES-128. In the 3.0 release you can use
AES-192 keys and possibly 256. For RSA 1024 bit keys are used by
default, but can be used up to 8192 bits.

Starting version 4.1, Concept supports RSA keys up to 16384 bits and
ECC (default) up to 521 bits. In future versions support for RSA keys less
than 2048 bits will be dropped.

For today’s standards 128 bits is both secure and fast, to avoid CPU
overhead. A brute-force attack on the AES-128 key means 3.4× 1038

possible combinations, prohibitive for this type of attack for today’s
computing power.

A subsystem is used for DRM (Digital Rights Management). Concept is
able to selectively encrypt packages. For example, in a VoIP application,
you may opt to encrypt only the voice packages, reducing the CPU
overhead. This is useful in mobile application, where hand-held devices
may use a little more battery for encryption.

The user login APIs uses digest MD5 and SHA1 algorithms, both in plain
form or challenge response authentication. This can be selected by the
programmer by selecting an appropriate login method.

1.4 Core

The core is a virtual machine that uses both an interpreter and a JIT
compiler. The VM operates on byte code generated by the Concept
Compiler (called accel). It has a structure composed of one operator, two
working operands (called left and right), a reserved operand and a result.
The keywords are treated as special operators without return, in order to
have a fixed structure, optimizing the execution time. When the
interpreter executes a function for the second time, tries to compile the
code in order to maximize speed and memory usage. Functions that are
called just one time are not compiled to native code in order to save
memory and CPU power. The control can be transferred in and out

10 CHAPTER 1. ARCHITECTURE

between interpreter and native code without causing problems. The core
does not use a fixed memory pool, the application being free to allocate
any amount of memory. In order to save memory it uses shared memory
pools, loading the byte code only once regardless of the number of users
connected and running different instances of the same application. All the
variables created by executing code are accounted for, and the application
cannot access the actual address of a variable. In practice, every variable is
a pointer, but the programmer deals only with the immediate value.

1.5 Concept Assembly

The byte code generated by the Concept Compiler is called Concept
Assembly. Is a mix of operators and instructions like IF and GOTO. For
example:

i=a+b+c*d;

if ((i>10) || (i<-10))

echo "Hello!";

will be optimized and decomposed to:

t0=c*d

t1=a+b

i=t0+t1

IF (I>10, ECHO..., IF(I<-10, ECHO...))

(Note that if first expression is TRUE the second one will not be evaluated)

1.6. GARBAGE COLLECTOR AND SMART DATA LINKING 11

The resulting Concept Assembly:

Instruction Operator Left Right Result Jump

1 * c d t0

2 + a b t1

3 + t0 t1 i

4 > i 10 t3

5 IF t3 7 (if false)

6 GOTO 10

7 < i -10 t4

8 OR t3 t4 t5

9 IF t5 11 (if false)

10 ECHO ”Hello!”

11 RETURN

1.6 Garbage collector and smart data linking

Concept has two memory management strategies: a kind of smart pointer
(that increase and decrease reference count) called SDL and a garbage
collector for managing cyclic references. Immediate cyclic references(object
that reference itself) are managed with ease by SDL. However cyclic
references that span over two ore more objects are more difficult to
manage. Concept variables have some overhead. Internally, the same
structure is used to keep any variable. For each of these variables, a link
count, a type flag, and property data overhead are kept. This means 15
bytes of metadata info (on 64 bit platforms). When a variable link count is
zero, the memory is automatically freed. However there is a case that
could generate leaks - the cyclic references. These are freed by the garbage

12 CHAPTER 1. ARCHITECTURE

collector.

An example of cyclic reference:

arr=new [];

someobject.references=arr;

arr[0]=someobject;

This situation will be managed by the Garbage Collector at some point of
program execution. In my opinion, this is bad programming, but is a
situation we all encountered sooner or later.

At various intervals, the garbage collector will check the variable
reachability and if some variables are unreachable, it will automatically
free the them. The garbage collector can also be manually invoked via
CheckReachability function:

CheckReachability();

Be advised that is not recommended to call this function, except for
memory critical complex data structures applications. Also, on large
datasets, this function call will be slow,

1.7 JIT compiler

In 2013 I’ve realized that the interpreter has reached a point where it
couldn’t go faster. Then I’ve decided to use a Just-In-Time compiler to
generate code specific to the platform(currently tested on i386, amd64 and
ARM). After implementing an open source JIT(called sljit), the
performance raised noticeably. I’ve used a sieve benchmark to measure the
gain in performance, and it was about 10 times faster than before, with
scores comparable to native code(binary code generated by gcc/g++). The
main problem was that Concept stored all its numeric variables as double
precision floating points. In order reduce the number of executed
instructions, the system tries to combine two or more instructions. For
example, the JIT compiler identifies a vector initialization in a loop, and
instead of iterating in that loop, it calls a special function that
automatically initializes the array.

1.8. MODULES 13

The results for the sieve benchmark implementation(using doubles).

397con

4067Concept JIT

2500gcc(no opt. using double)

4227gcc(-O3 using double)

393php

0 500 1000 1500 2000 2500 3000 3500 4000

1.8 Modules

The Concept core can be easily extended by writing modules in virtually
any programming language that has a native compiler. The standard
server has about 80 modules that cover specific operations ranging from
basic I/O to high level modules like Twitter interaction.

It is fairly easy to create a Concept module. For example, in C/C++ you
can create two files:

library.h

#ifndef __LIBRARY_H

#define __LIBRARY_H

// provided with concept, defines all

// the macros and data structures

#include "stdlibrary.h"

extern "C" {

CONCEPT_FUNCTION(sin)

CONCEPT_FUNCTION(cos)

}

#endif

14 CHAPTER 1. ARCHITECTURE

main.cpp

#include "library.h"

#include <math.h>

CONCEPT_FUNCTION_IMPL(sin, 1)

T_NUMBER(0)

RETURN_NUMBER(sin(PARAM(0)))

END_IMPL

CONCEPT_FUNCTION_IMPL(cos, 1)

T_NUMBER(0)

double result=cos(PARAM(0))

RETURN_NUMBER(result)

END_IMPL

Then, you just need to compile it:
On windows:
gcc -shared main.cpp -o eduard.library.test.dll

Everywhere else:
gcc -shared main.cpp -o eduard.library.test.so

Creation of modules will be discussed in detail in Chapter 6 - Static
functions.

The list of standard modules:

Module name Depends Opt. Notes

concept.helper.idgenerator Generates object IDs
standard.ai.fann libfann YES Artificial neural networks
standard.arch.opus libopus OPUS audio codec
standard.arch.speex libspeex SPEEX audio codec
standard.arch.h264 OpenH264 YES H.264 video codec
standard.C.casts cast functions (C/C++)
standard.C.io basic I/O functions
standard.C.math math functions
stabdard.C.string C string functions
standard.C.time time functions (C/C++)
standard.coding.base64 mime-encode
standard.db.dbase YES dBase support
standard.db.firebird YES Firebird driver

1.8. MODULES 15

standard.db.mongo YES Mongo driver
standard.db.mysql YES MySQL driver
standard.db.nuo YES NuoDB driver
standard.db.pq YES PostgreSQL driver
standard.db.sql ODBC driver
standard.db.sqlite YES SQLite driver
standard.graph.imagemagick MagickWand YES ImageMagick interface
standard.graph.svg librsvg YES SVG support
standard.graph.svgt libsvgt YES Tiny SVG support
standard.graph.wk webkit YES Server-side web page screenshot
standard.io.rs232 YES rs232 interface
standard.lang.cli Command-line utils
standard.lang.js spidermonkey YES JavaScript functions
standard.lang.parallel OpenCL YES Parallelization functions
standard.lang.profiler YES Profiler support
standard.lang.serialize libxml2 Serialization utils
standard.lib.amf YES AMF serialization
standard.lib.captcha Captcha generator
standard.lib.chart libgd YES Deprecated chart engine
standard.lib.cripto Criptographic library
standard.lib.csv CSV support
standard.lib.dtmf DTMF supports (telephony)
standard.lib.face OpenCV YES Face detection functions
standard.lib.gd libgd YES Deprecated
standard.lib.hpdf libharu YES Deprecated PDF generator
standard.lib.hunspell hunspell Spell checker
standard.lib.iconv libiconv Text conversion
standard.lib.json json-c JSON serialization
standard.lib.languagedetector CLD Language detector
standard.lib.msword YES MS Word document parsing
standard.lib.ocr tesseract YES OCR
standard.lib.poppler libpoppler PDF
standard.lib.pcre libpcre Perl regexp
standard.lib.regex POSIX regexp
standard.lib.shared Shared memory functions
standard.lib.sphinx PocketSPHINX YES CMU Sphinx voice recognition
standard.lib.str String manipulation
standard.lib.thread Multi-threading
standard.lib.virt libvirt YES Virtualization interaction
standard.lib.xls libxls YES Excel file support

16 CHAPTER 1. ARCHITECTURE

standard.lib.xml libxml2 XML
standard.lib.xslfo YES XSL:Fo
standard.lib.xslt Sablotron YES XSLT
standard.lib.xslt2 libxslt XSLT
standard.math.gmp libgmp YES
standard.math.rand Random numbers support
standard.net.bluetooth bluez YES Bluetooth support
standard.net.curl libcurl Multiple protocols
standard.net.dns YES DNS protocol
standard.net.ftp YES FTP protocol
standard.net.geoip GeoIP YES IP tracking
standard.net.im libpurple YES IM protocols
standard.net.ldap YES LDAP support
standard.net.mail YES POP3/SMTP protocol
standard.net.mapi YES
standard.net.memcached libmemcached Memcached client
standard.net.modbus libmodbus YES Modbus protocol
standard.net.flow YES Netflow v5/v9 parser
standard.net.opal OpalSIP YES SIP and RTP protocols
standard.net.rtp jrtplib YES RTP protocol
standard.net.sip libosip2 YES SIP protocol
standard.net.snmp netsnmp YES SNMP protocol
standard.net.soap C-SOAP YES SOAP
standard.net.socket Socket support
standard.net.ssh libssh2 YES SSHv2
standard.net.twitter libcurl YES Twitter protocol
standard.net.webdav YES WebDav support
standard.search.xapian Xapian Xapian search
standard.tts.mbrola mbrola YES Text to speech engine
web.server.api Web applications helper
web.service.template Deprecated smarty-like templates
win32.base.message Dispatching client messages
win32.graph.freeimage FreeImage Image manipulation functions

Note that modules prefixed by ”win32” have nothing to do with Windows.
They are named this way purely for backward compatibly only.

1.9. SUPPORTED PLATFORMS 17

1.9 Supported platforms

Concept Application Server runs on various operating systems and CPU
architectures. For example, I like how it performs on FreeBSD, but the
majority of the actual users runs Concept of Linux (Debian, Ubuntu) and
Windows for its simplicity. However, a while ago I’ve moved a CAS
solution from Windows 2008 physical server to a Linux virtual machine
with similar configuration. I was more that impressed on how it
performed. It seemed to be at least twice as fast when dealing with
databases. It seems that Linux does a better job when caching the data
than Windows. I’m not a open-source “politick” freak, I actually consider
that most of the operating systems are good at what they do: interface the
user with the hardware.

You will find on devronium.com website binary packages for Windows,
Linux, in both 32 and 64 bit flavors. For everything else, you will have to
download and compile the sources. I’ve compiled the sources with little to
no modifications on FreeBSD(intel), OS X(intel) and Linux(ARM). In
theory it should work on PPC and SPARC, but I had no request yet for
that platforms. It supports both big endian and little endian platforms.

On Microsoft Windows, you just have to download the Concept Server
installer from devronium.com and open it. On Debian and Ubuntu, you
may download the appropriate binary package (i386 or amd64) and install
it using:

$ sudo dpkg -i concept.server.3.0.amd64.deb

And then, to resolve dependencies:

$ sudo apt-get install -f

As a note, the only framework element not cross-platform is the UNIX
socket (discussed further in this book). On Windows, UNIX sockets are
emulated using named pipes, but have limited support when compared to
real unix sockets.

18 CHAPTER 1. ARCHITECTURE

Chapter 2

The client

Concept client “the bee” (see figure 2.1) is a thin client that allows the
user to access concept:// applications.

Concept client is cross-platform and has similar behavior on Windows, OS
X, Linux/Unix, BSD, Android and iOS.

There are two different approaches in how the client is implemented. First,
there is the desktop version, that allows plug-ins and feature-rich controls.
Then, there is the mobile version, that is focused on saving battery power
and provide a consistent user experience by using only native controls.

Note: Concept client uses cryptography and may be illegal in some
countries.

Figure 2.1:
Concept Client Bee

19

20 CHAPTER 2. THE CLIENT

Starting with Concept Server 4.0 a new client was introduced. Concept
Client 4.0 JS is a pure JavaScript implementation of the concept protocol,
on top of web sockets. Almost any native concept:// application could be
run directly in browser.

2.1 Workstations

Concept Client can be run on most desktop operating systems, including
Microsoft Windows, Mac OS X and Linux. Its user interface is based on
GTK+ for versions up to 2.6 and on Qt for 3.0. Both GTK+ and QT
provide a cross-platform framework that can use native controls (on
Windows and Mac OS X).

The Bee can use both direct address or saved shortcuts. For example, if
you click on ”Open concept address” on Windows or ConClient on Mac OS
X, a prompt will ask you to enter an addres. An example address would be
concept://devronium.com/HelloWorld/HelloWorld.con. Alternatively you
can use server shortcuts - text files with the .ss extension. HelloWorld.ss
opened as a text file.

[Shortcut]

Host = devronium.com

Application = HelloWorld/HelloWorld.con

Secured = No

This is equivalent of using
concept://devronium.com/HelloWorld/HelloWorld.con. If you want to use
the secured version of the protocol(concepts://), you can set the Secured
flag to Yes.

Also, you can pass parameters to an application by adding at the path’s
end: concept://devronium.com/HelloWorld/HelloWorld.con?name=Edi.

Alternatively you can invoke an application from command line, for
example:

$ conclient concept://devronium.com/HelloWorld/HelloWorld.con

or

2.1. WORKSTATIONS 21

$ conclient devronium.com HelloWorld/HelloWorld.con

On Windows the installer associates concept: protocol with the bee, and
you can send concept links by e-mail and open it from browsers.

The workstation version has a plug-in system that enables you to add
custom controls to a specific client. For example, on Windows version you
can use COM (.NET) objects, but I wouldn’t recommend it because of the
portability issue. By default, Concept Client comes with the following
plug-ins:

Audiere
audio playback (built-in in Concept Client 3.0)

Audiostream
audio recording and playback

Flash
based on SWFDec (deprecated since 3.0)

Glade
used by the CIDE for design view (replaced by RDesigner in Concept
3.0)

HTML
html rendering component (built-in in Concept Client 3.0)

Julius
speech recognition

Multimedia
audio and video playback based on the FFmpeg libraries (replaced
by built-in APIs in Concept Client 3.0)

PDF
pdf rendering component (built-in in Concept Client 3.0)

Scintilla
syntax highlight and auto completion control

Videocapture
video capture and processing based on the OpenCV library

22 CHAPTER 2. THE CLIENT

WebKit
browser component (built-in in Concept 3.0)

2.2 Mobile devices

The mobile Bee is just a stripped down version of the Concept Client that
drops GTK+ or Qt, and uses instead the native UI of the target operating
system. At the time I wrote this book, it had three versions: one for
Android 2.3.6, one for Android 4.x and one for iOS 7 or bigger. A
Windows phone version is planned, but I can’t confirm yet that will be in
production. All these are using the same core as the workstation version
(written in C/C++) but has specific user interface code (written in Java
for Android and Objective C for iOS).

For security reasons, the mobile version is not expandable (no plug-ins are
available), but the following plug-in functionality is built in: audio
streaming, WebKit engine, camera and microphone capture. It has some
additional features not available on workstation, like user tracking (GPS or
Network) and device wake/sleep commands.

It uses the same relative engine used by the workstation version in order to
provide consistent layout on different screen resolutions. However, I
recommend that the developer create different interfaces for desktop and
mobile keeping in mind that screen size is significantly smaller in smart
phones and tablets.

2.3 Web browsers

Additionally Concept Client 4.0 JS can run in most modern browser
(Firefox, Chrome, IE 11, Safari and any other webkit-based browser).
Concept Client 4.0 JS is included in the Concept Server 4.0 standard
distribution. Is build in pure JavaScript, using bootstrap as the UI library.
It uses web sockets for exchanging data (instead of GET/POST),
enhancing the response time. The client is relatively light, having only
bootstrap as a dependency, and a few optional plug-ins depending on
jQuery. This is soon to be the primary concept client. The only
restriction, for now, comes from Safari and Internet Explorer, not

2.3. WEB BROWSERS 23

supporting audio and/or video APIs, making impossible a full
implementation of the concept native client. For most non-voip/video
applications this should not be a problem.

All concept development tools (CIDE, GyroGears) run on the JS client,
but I still recommend using the native client for development, because the
UI is not optimized (yet) for web browsers. Full web browser support is
planned for Q3 2015.

24 CHAPTER 2. THE CLIENT

Chapter 3

Developer tools

The standard Concept Server distributions comes with tools like Concept
IDE, GyroGears, BeeKeeper, DoInstall subsystem and WKB(a simple web
browser based on WebKit).

3.1 Concept IDE

CIDE is the Concept Integrated Development Environment. It includes
features like:

• syntax highlighting

• code completion

• members/class folding

• design view with Concept RDesigner

The code editor is based on the scintilla control. It communicates with the
Concept Debugger, being able to run in debug mode concept server
application, console applications and web applications. CIDE is open
source and cross platform(like any other Concept application). Due to the
Concept Application Server (CAS) working model, a single CIDE

25

26 CHAPTER 3. DEVELOPER TOOLS

distribution may run on a server and be instantiated by multiple software
developers.

In addition, it includes some various tools like SQL Tool, a tool that works
with most of the database servers (using ODBC). Another useful tool is
the Team Chat panel, which allows developers to chat and share code.

CIDE comes by default with Concept Application Server by selecting
developing tools when installing. On Windows you can open it locally by
running Start -¿ Programs -¿ Concept II -¿ CIDE.

3.2 Application deployment

The deployment is a simple process based on a few steps. If you user
GyroGears, the package installer will be created automatically by pressing
the ”Create installer” button. On CIDE projects, you must compress the
application folder into a zip file. You may create a .ss(server shortcut) file
and put it in the archive. Rename the .zip file to .conceptinstall and you
have the installer. Upload the resulting file to a web server of your choice.

On the target machine, you can either run the DoInstall.ss shortcut, or
send a link by e-mail like this:

<a href =

"concept://localhost/Do/Install?http://yourserver.com/YourApp.conceptinstall">

Click here to install/update the application

If you manually run DoInstall on the target machine, you can simply paste
your link:

http://yourserver.com/YourApp.conceptinstall

If you bundled a .ss file, then it will be copied into the ”Installed
applications” folder. Your application will be unpacked into the Concept
server root.

This allows you to fully deploy your application with minimum effort,
without needing remote access because the end-user is the one who

3.2. APPLICATION DEPLOYMENT 27

requests the update. This avoids a lot of firewall problems because the
update is made via a simple HTTP request.

28 CHAPTER 3. DEVELOPER TOOLS

Part II

Concept Programming

29

Chapter 4

Language

The Concept programming language is the heart of the entire system. It is
strictly object oriented, with a traditional syntax similar to
ECMAScript/Java/C#/C++, being designed to be easy and fun.

Before we start, remember:

• Every application must have exactly one class named Main with an
implemented constructor.

• Variable, member and class names are case sensitive. This means
that foo is not the same with Foo.

• A class name must be unique for the entire application. You cannot
redefine a class, you can just extend it (with a new unique name)

• Member names must be unique in the same class, regardless of type
or parameters

• Variable names must be unique function wide regardless where they
are declared

• For source files is recommended to use the .con extension. For
sources used in web pages .csp is recommended (acronym from
Concept Server Page).

31

32 CHAPTER 4. LANGUAGE

4.1 Hello world

Let’s create our first console application that will write a message to the
standard output.
HelloWorld.con

class Main {

function Main() {

echo "Hello world!";

}

}

The program execution starts by creating one instance of the class Main
(somehow a singleton). This results in a call to the Main constructor,
Main(). This is your application entry point. Note that Main() should
have no parameters.

echo is a keyword. The reason is a keyword and not a module function is
that output is managed explicitly by the Concept core, and as you will see
in the next example, sometimes the output travels over a socket or a web
server.

On non-Windows platform, you could add a special first line enabling you
to threat a Concept Program as a shell script. Note that the ”function”
keyword is purely optional, so you could simplify this example to:

#!/usr/local/bin/concept

class Main {

Main() {

echo "Hello world!";

}

}

You can execute this code by typing in a shell.

Windows:

HelloWorld.con

4.1. HELLO WORLD 33

Non-windows:

./HelloWorld.con

Note that on non-windows you must execute a chmod first:

$ chmod 0755 HelloWorld.con

or, explicitly call the core (without setting any execution rights)

concept HelloWorld.con

This will cause the compilation in memory and then the execute the
program.

When dealing with large applications (tens of thousands lines of code) this
will become slow. It’s recommended that you compile the source code
using the concept compiler - accel

accel HelloWorld.con

This will produce a file named HelloWorld.con.accel. This file contains the
byte code(concept assembly) for the entire program. Note, that you must
supply both files (the .con and the.con.accel). If you’re working at a
closed-source project, just place an empty file named HelloWorld.con
instead of actual source.

Beginning with Concept 4.1, semicolon is optional if pragma strict off is
set. The above example could be rewritten as:

#!/usr/local/bin/concept

// note the following line

pragma strict off

class Main {

Main() {

// note the missing semicolon

echo "Hello world!"

}

}

34 CHAPTER 4. LANGUAGE

For readability, it is preferable to use semicolon, but I noticed there is a
trend for dropping it, so it’s up to the developer’s coding style.

4.2 Hello world from between the clouds

We’ve seen in the previous section a classic program. Now we will create a
similar application that makes use of the concept:// protocol. Let’s
consider the following example.

HelloWorldCloud.con

include Application.con

include RForm.con

include RLabel.con

class HelloForm extends RForm {

private var labelHello;

HelloForm(Parent) {

super(Parent);

labelHello=new RLabel(this);

labelHello.Caption="Hello world!";

labelHello.Show();

}

}

class Main {

Main() {

try {

var Application=new CApplication(new HelloForm(null));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo "Didn’t catch $Exception";

}

}

}

This must be saved into your server’s root. For localhost connections, the
root is “Samples”, for remote is “Public” on non-windows. On Windows, it

4.3. DATA TYPES 35

Figure 4.1:
Double floating point representation

is “Samples” for any connection.

You should be able to open (via Concept Client, desktop and mobile, refer
to section “The Client”) the link:
concept://localhost/HelloWorldClound.con
Just keep in mind that no code executes on the client. Everything is done
on the server, the client just showing an interface to the user.

Don’t be alarmed number of lines. Everything will be written for you by
Concept IDE as you will see in the next chapters.

4.3 Data types

Concept data types are simple and easy to switch between them. The
types are: number, string, object, array and delegate.

All the numeric values (integer, both signed and unsigned and real
numbers) are kept as double precision floating point numbers, known as
double (IEEE 754 binary64). This should be big enough to handle any
kind of number (see figure 4.1). The only disadvantage of this approach is
the lower speed in computation based on integers stored as double floating
point. However on modern CPUs the floating point operations are now
comparable with integer operations.

Maximum integer that can be stored without loosing precision is 253. Loss
of precision will occur after that value. CPU architecture doesn’t affect the
number domain.

Strings, objects and arrays use additional overhead bits. To optimize
memory usage, each member variable is created when first used.

Strings are limited to a length of about 2,147,483,647 (231-1) on 32 bit

36 CHAPTER 4. LANGUAGE

architecture, which is both the maximum value for the signed integer
representing its size and maximum memory segment size. On 64 bits the
theoretical limit is 263 but in practice depends of operating system and
CPU.

Each class has a maximum member count of 65,535 members(regardless of
architecture).

Arrays have a maximum element count of 2,147,483,647 regardless of
architecture. Note that on 64 bits an array could have more elements, but
it won’t be managed by the JIT (but could be interpreted). Array string
keys must not contain the null character.

A variable is defined with the keyword var(short for variant). When
declaring a variable, you can set the default value for it, for example:

// declaring a numeric variable

var a=10;

// declaring a string variable

var s="Hello !";

// declaring an array

// exactly the same as var arr=new [];

var[] arr;

// or

var arr2=[1, 2, 3, a, s];

// or, with keys

var arr3=["one" => 1, "two" => 2, "three" => 3, "a" => a, "s" => s];

// declaring an empty variable

// exactly the same as var x=0;

var x;

// declaring multiple variables

var i, j=2, k;

4.3.1 Numbers

Numeric data type is used to store both real and integer values. All
Concept variables with no other value assigned are by default numeric with
a value of zero.

SolveSimpleEquation.con

4.3. DATA TYPES 37

class Main {

Main() {

var a, b, x;

a=3;

b=2;

// you can say: var a=3, b=2, x;

// it has the same result of the above code

// you should test for a not zero

x=b/a;

echo "The solution of the equation ${a}x+$b=0 is $x\n";

}

}

Resulting in

The solution of the equation 3x+2=0 is 0.666666666666667

You can use hexadecimal values by adding the ”0x” prefix.

echo 0xFFFF;

Will output 65535. Hexadecimal numbers are not case sensitive, 0xFFFF
being exactly the same as 0xffff. You cannot represent non-integer
numbers as hexadecimal.

Also, numeric values are used as boolean. There are three special
constants: true(value 1), false(value 0), null(value 0);

BooleanExample.con

class Main {

Main() {

var a=true;

if (a)

echo "Is true!";

else

echo "Is false!";

}

}

38 CHAPTER 4. LANGUAGE

4.3.2 Strings

Concept strings are auto-allocable, self managed and easy to use. The
string contents must be enclosed either by ’ or by ” quotes. Simple quotes
do not parse the string.

For example StringExample.con

class Main {

Main() {

var name="Eduard";

echo "Hello $name!";

}

}

will print out

Hello Eduard!

The same example, using simple quotes

class Main {

Main() {

var name="Eduard";

echo ’Hello $name!’;

}

}

The output:

Hello $name!

The $ sign will break the string enclosed by ”(first example), and insert
there the given value. You can only insert one variable. If you need to
make some computation, or use class member variables, you need to user
the { }.

StringExampleWithExpression.con

class Main {

Main() {

4.3. DATA TYPES 39

var a=1;

var b=2;

echo "The result of $a + $b is ${a+b}";

}

}

will print out

The result of 1 + 2 is 3

You can access characters of the string by using the index operator.

class Main {

Main() {

var word="Bicycle";

echo "$word starts with ${word[0]} and ends with

${word[length word - 1]}";

}

}

The output:

Bicycle starts with B and ends with e

You can perform positional updates using the index operator:

class Main {

Main() {

var word="2 words";

word[0]="3";

echo word+"\n";

word[0]="four";

echo word+"\n";

}

}

The output:

3 words

four words

40 CHAPTER 4. LANGUAGE

As you noticed, the a character may be replaced by more than one
characters.

You can escape a string by using \. For example, ”My name is $name”
will print out My name is $name instead of using the variable name.
You can insert specific characters: ”2 to n-th power: 2\xFC” will output 2
to n-th power: 2n.

Character Notes

\n New line

\r Carriage return

\t Tab character

\x Hexadecimal character following (next two characters)

\0 Octal character following

\v Vertical tab

\f Form feed

\a Alarm (a beep)

\b Backspace

\$ Don’t evaluate next $ character

\¨ Double quotes escaped

\´ Simple quote escaped

You can find out the length of a string by using the length operator (var
len = length str).

4.3. DATA TYPES 41

4.3.3 Arrays

Concept vectors are not homogeneous. This means that you can put
virtually anything in an array. The same array can contain numeric
elements, strings, objects and even references to itself.

There are 3 way to create an array:

var first_array=new [];

var[] second_array;

var third_array=[];

For the given code, all three arrays produce the same result - an empty
array.

ArrayExample.con

class Main {

Main() {

var arr=new [];

arr[0]=1;

arr[1]=[1, 2, 3];

arr[2]="Hello!";

arr[3]=this;

echo arr;

}

}

Will output:

Array {

[0] => 1

[1] =>

Array {

[0] => 1

[1] => 2

[2] => 3

}

[2] => Hello!

[3] => Main

}

42 CHAPTER 4. LANGUAGE

The array contains everything, from numbers to another array and a
reference to object.

A matrix can easily be defined like this:

var matrix= [

[10, 11, 12, 13],

[20, 21, 22, 23],

[30, 31, 32, 33]

];

If, for example, the element on the line two, column one is needed,
matrix[1][0] may be read or set.

echo matrix[1][0];

Will print 20 on the screen. Remember that the index of the first element
in an array is 0, so matrix[1] will reference the second array (line). All
array indexes must be greater than 0. A negative index will result in a
run-time error.

Arrays can also have string keys. Note if a key contains a null character, it
will be used as a key only until that point.

For example:

var a=arr["key\0 1"];

var b=arr["key\0 2"];

Will reference the same element, arr[”key”].

KeyExample.con

class Main {

Main() {

var arr=["One": 1, "Two": 2, "Three": 3];

arr["Four"]=4;

echo arr;

}

}

4.3. DATA TYPES 43

Will output:

Array {

[0,"One"] => 1

[1,"Two"] => 2

[2,"Three"] => 3

[3,"Four"] => 4

}

Note that you can use : or => in key/value pairs,
[”One”: 1, ”Two”: 2, ”Three”: 3]
being exactly the same as
[”One” => 1, ”Two” => 2, ”Three” => 3].

You can find out the length of an array by using the length operator (var
len = length arr). An array element may be accessed by its index or by its
key, for example, in the previous example, we could say:

class Main {

Main() {

var arr=["One": 1, "Two": 2, "Three": 3];

// access array element by index

// 0 is the index of the first element

if (arr[0]==1)

echo "First element is 1";

// access array element by key

if (arr["Two"]==2)

echo "Element with key ’Two’ is 2";

}

}

By using the KeySorted(array) function, an new array will be created,
with elements ordered by key. This is a very fast way of sorting data,
because the key are already sorted in the array index, resulting in a O(1)
running time.

For example:

include Serializable.con

[..]

var arr = KeySorted(["Z": "z", "M": "m", "K": "k"]);

[..]

44 CHAPTER 4. LANGUAGE

will return:

["K": "k", "M": "m", "Z": "z"]

The GetKeys(array)(must include Serializable.con) static function will
return an array containing the keys used in the given array. For a complete
list of the array functions, please check the Concept Documentation.

4.3.4 Objects

Object are instances of classes. You can create one by using the new
operator. A class can have member variables, functions, properties,
constructor, destructor and virtual members. Can extend an existing class.
Member variables can be of any type. In a single source file you can define
any number of classes you need. However, I would recommend that each
class should have its own source file.

SimpleObjectExample.con

class Repair {

var Cost=0;

var Description="";

}

class Car {

var Maker="";

var Model="";

var Driver="Yellow";

var[] Repairs;

}

class Main {

var[] cars;

Main() {

var car=new Car();

car.Maker="Mini";

car.Model="Cooper";

car.Driver="Mr. Bean";

var repair=new Repair();

repair.Cost=30.20;

4.3. DATA TYPES 45

repair.Description="Changed the door locks";

car.Repairs[0]=repair;

this.cars[0]=car;

}

}

You can access a class member by using the selector operator(point). this
always refers the current object. This is a special variable created in each
function. You cannot define a variable named ”this”.

Note that instead of . you could use -> (C/C++-style).

Class member and variable names obey the same naming rules. All
keywords are reserved and cannot be used as variable names. Variables
names must contain only characters a to z, A to z, 0 to 9, and . Any other
character is invalid. Both member and variable names cannot begin with a
number. There is no explicit rule on maximum name length, but I would
recommend to avoid extremely long names.

4.3.5 Delegates

Delegates are references to existing functions. Both a function and object
reference can be stored in a variable.

DelegateExample.con

class Main {

foo() {

echo "Delegate call!";

}

Main() {

var d;

d=this.foo;

d();

}

}

46 CHAPTER 4. LANGUAGE

Will output:

Delegate call!

A delegate variable increments the object links count in order to ensure
that the delegate will be called. The link count will be decreased when the
delegate variable will be deleted or reset.

Delegates are used by Concept Framework in mapping events. It is a
convenient way of referencing both an object and a function defined in
object’s class.

Keep in mind that a delegate references both the object and the class
member and as a consequence it cannot reference a static function.

4.4. UNARY OPERATORS 47

4.4 Unary operators

Unary operators have only one operand.

Operator Data types Can overload Description

! all Logical negation (NOT)

˜ number YES Bitwise negation

++ number, string YES Increment

– number YES Decrement

@ number Special prefix

length string, array Get length

value number, string Evaluate string

typeof all Get variable type

classof class Get object class

new class, array Creates an object

delete all Equivalent of object=null

The ! operator applies to all data types. !number returns 1(true) if number
is 0(null) or 1(false) otherwise. !string returns true if string is empty, false
otherwise. !array returns true if array has no elements, false otherwise.
!object always returns false. The operator performs a bitwise negation on
an integer. For example, 12 (1100 in binary) the result will be 3(0011 in
binary).

! and operators are used always on the left side of the operand

++ and – operators applies to strings and numbers. It can be used both at
left or at right side of the operand.

For example:

48 CHAPTER 4. LANGUAGE

var a=1;

echo ++a;

Will increment a to 2, and will print it (2).

When used at right side:

var a=1;

echo a++;

First will return the current value of a (1) and then will increment it,
printing 1.

Similar with –, but instead of incrementing will decrement a by 1.

var a=1;

echo --a;

Will print 0.

@ prefix (not an operator) will give you access to some compile-time
information. You can use it as @line, @filename, @path, @time, @class and
@member.

SpecialConstant.con

class Main {

Main() {

echo @class+"."+@member+":"+@line+", file "+@filename+",

compiled "+@time;

}

}

Outputs

Main.Main:3, file SpecialConstant.con, compiled 1388601305

@line will return the line number, @class the class name, @member the
member name, @filename the filename, @path the full path and @time the
compilation time as seconds since epoch (January 1, 1970, 00:00:00).

4.4. UNARY OPERATORS 49

length operator is useful when you want to get the length of an array or
string.

echo length "12345";

Will output 5. For arrays:

echo length [1, 2, 3, 4, 5];

Will output 5.

You cannot use length with objects and delegates.

value operator evaluates a string to a number. When used on a number it
simply returns the number.

var s="10";

var result=s+1;

Will make result a string containing ”101”, because it will concatenated 1
to the existing string. But, if you use:

var s="10";

var result=value s + 1;

Will make result a number with the value 11.

typeof operator will return a string describing the type of a given
variable. It can be only one of the following values: “string”, “numeric”,
“array”, “class” and “delegate”.

typeofExample.con

class Main {

foo() {

}

Main() {

echo typeof "Hello!";

echo "\n";

echo typeof 1;

50 CHAPTER 4. LANGUAGE

echo "\n";

echo typeof this;

echo "\n";

echo typeof this.foo;

echo "\n";

echo typeof [1, 2, 3];

}

}

outputs

string

numeric

class

delegate

array

classof is similar with typeof, but instead of the type it returns the class
name for a given object. If the given object is not a class, it will return an
empty string.

classofExample.con

class Main {

Main() {

echo classof this;

}

}

outputs

Main

The new operator is used to create objects or array. On the right side it
should have the name of the class to instantiate or [] if you want to create
an array. Note that [] must contain no characters or spaces.

newExample.con

class Test {

Test(name) {

4.4. UNARY OPERATORS 51

echo "Hello $name!";

}

}

class Main {

Main() {

var arr=new [];

var obj=new Test("Eduard");

}

}

This creates an empty array(arr) and an object(obj) and calls Test’s
constructor, outputting:

Hello Eduard!

delete exists only for syntax compatibility reasons.

deleteExample.con

class Test {

finalize() {

echo "Destroyed";

}

}

class Main {

Main() {

var obj=new Test();

echo "About to delete ... ";

delete obj;

echo "done\n";

}

}

Outputs:

About to delete ... done

Destroyed

As you can see, the Test destructor is called long after the call to delete.

52 CHAPTER 4. LANGUAGE

This is because the core manages the memory. Setting obj to null has
exactly the same effect.

4.5. BINARY OPERATORS 53

4.5 Binary operators

Binary operators have two operands: left and right operand.
Operator Data types Can overload Description

* number YES Multiplication

/ number YES Division

% number YES Remainder

+ number, string, array YES Addition

- number YES Substraction

<< number YES Shift left

>> number YES Shift right

< number, string YES Less than

<= number, string YES Less or equal than

> number, string YES Greater than

>= number, string YES Greater or equal than

== all YES Logical equal

!= all YES Logical not equal

& number YES Bitwise and

| number YES Bitwise or

∧ number YES Bitwise xor

&& all YES Logical and

|| all YES Logical or

?? all null-coalescing operator

= all YES Assignment

+= all YES Increment by

-= number YES Decrement by

*= number YES Multiply by

/= number YES Divide by

%= number YES Remainder of division by

=& all Assignment (no overloading)

&= number YES Bitwise and with assigment

∧= number YES Bitwise xor with assigment

|= number YES Bitwise or with assignment

<<= number YES Shift left with assignment

>>= number YES Shift right with assigment

[] string, array YES Index selector

. class Member selector

-> class Member selector

:: class Static member selector

54 CHAPTER 4. LANGUAGE

Operator precedence:

1. ()

2. new, delete, typeof, classof, length, value, !, , ++, –, (-/+ used as
signs)

3. /, %, *

4. +, -

5. <<, >>

6. <, >, <=, >=

7. ==, !=

8. &, ∧, |, &&, ||, ??, =>(key-value specifier for arrays)

9. =, =&, +=, -=, /=, %=, *=, &=, ∧=, |=, <<=, >>=

Note that operators on the same level are evaluated in the order they are
encountered, if no () are used. If you group operations in parenthesis (),
then you can alter the precedence. For example 2 + 2 * 2 will be
evaluated at 6. However, (2 + 2) * 2 will be evaluated as 8. The +
operator can be used on numbers, strings and arrays. plusExample.con

class Main {

Main() {

echo 1+1;

echo "\n";

echo "a"+"b";

echo "\n";

echo [1, 2, 3]+[4, 5];

}

}

Outputs:

2

ab

Array {

[0] => 1

4.5. BINARY OPERATORS 55

[1] => 2

[2] => 3

[3] => 4

[4] => 5

}

You can also use + with operands of different types. The result will have
the type of the left operand.

plusExample2.con

class Main {

Main() {

// will be evaluated as 1 + 2

echo 1+"2";

echo "\n";

// will be evaluated as "2" + "1"

echo "2"+1;

echo "\n";

echo [1, 2, 3] + 4;

}

}

Outputs:

3

21

Array {

[0] => 1

[1] => 2

[2] => 3

[3] => 4

}

Note that if the array uses keys, the elements with keys are ignored in
order to avoid key conflicts. For /, %, /= and %= ensude that the right
operand is not zero. When running in interpreted mode you will get a
runtime error. But when running in JIT, the expression will be evaluated
to +/-INFINITE. The logical operators ||(OR) and &&(AND) have a
different behavior. For ||, if the left operand is true, the second one is not
evaluated. For &&, if the left operator is false, the second one is not

56 CHAPTER 4. LANGUAGE

evaluated. || and && accept any type of variable.

Delegate and class variables are evaluated to true. Arrays and strings are
evaluated to true if they have at least one element, respectively character.
Numbers are evaluated to true if they are not-zero.

The =& operator is identical with =, except that it cannot be overloaded.

equalExample.con

class Test {

operator =(val) {

echo "New value: $val";

}

}

class Main {

Main() {

var obj=new Test();

obj=null;

obj=&null;

}

}

Outputs:

New value: 0

The line obj=null calls the operator implemented in class Test. However,
the next line, when the =& is used, the obj is set to null (as it would be
deleted). The ?? operator (null-coalescing operator) evaluates to the right
operand, if left operand is not true. The result can have either the type of
left or right.

var result = a ?? b;

is exactly the same as

if (a)

result = a;

else

result = b;

4.5. BINARY OPERATORS 57

The member selector operator . is identical with ->. Also, . can be used as
an alias for ::. In practice I would recommend you use . in both situations,
like this:

selectorsExample.con

class Test {

var a;

static function foo() {

}

}

class Main {

Main() {

var obj=new Test();

// the same as obj->a=10;

obj.a=10;

// the same as Test::foo();

Test.foo();

}

}

I would recommend using “.”, for purely aesthetic reasons. Is up to you
which one you prefer. The only exception is when calling an overriden
member (see Virtual members) when it may cause some ambiguity.

The index operator [] can be used both in strings and arrays. The index,
if a number, must be non-negative. Negative indexes will generate a
run-time error. For arrays, requesting an index for a non-existing element,
will cause the element creation and array length increase accordingly. For
string, requesting an out-of-bounds character will return an empty string.
If the index is a key, for arrays will be treated as a key, instead of an index.
For strings, it will be evaluated to a number, and then the character on the
position described by the string will be returned.

An array could have both key-value pairs and values. If a key is added, the
given element can be accessed by position. Each new key creates an index
equal with the previous length of the array. For example, adding ”key 1”
in an empty array, will generate index 0 for that key. The same key added
in an array with 10 elements, will generate index 10.

58 CHAPTER 4. LANGUAGE

var arr=new [];

arr["my key"]="my value";

arr[1]="Another value";

echo arr[0];

This will print “my value” on the console.

As a thing to remember: avoid non-integer indexes. In practice you should
never use a index like 1.7. However, the Concept Interpreter will floor this
to 1 and will return the element on the first position. The problem arise
when running native code. Some optimization in the core, rounds 1.7 to 2.
The same code, in this situation, can result in different results returned
when running in interpreter and in JIT. As I said before, you should have
no reason to use real indexes, and it is “bad programming”.

<, <=, >and >= can be used both for numbers and strings.

echo 1 < 2;

will print “1” (true).

echo "Andrew" < "Maria";

will also print “1” (true), because “A” precedes “M”. Note that string
comparisons are case-sensitive. If we would compare “Andrew” with
“Anna”, The difference will be made by the third letter, first two being the
same.

4.6 Loops and conditions

In Concept, we have two methods of testing a condition.

1. Using if..else

2. Using switch..case..default

4.6. LOOPS AND CONDITIONS 59

if evaluates a single expression enclosed by (). The expression can have
any result type.

if (object)
is always true

if (delegate)
is always true

if (array)
is true if an array has at least one element. Is equivalent with if
(array && length array)

if (string)
is true if a string has at least one character. Is equivalent with if
(string && length string)

if (number)
is true if number is not zero

ifExample.con

class Main {

Main() {

var i=0;

if (i==1)

echo "i is 1";

else

echo "i is not 1";

}

}

outputs

i is not 1

Note that if you have more than one statements in a if or else branch, you
must group them using { }.

ifExample2.con

60 CHAPTER 4. LANGUAGE

class Main {

Main() {

var arr = [1, 2, 3];

if (arr) {

echo "The sum is: ";

echo arr[0] + arr[1] + arr[2];

} else

echo "arr is null";

}

}

outputs

The sum is 6

You can put multiple if/else one after another.

if (i==1)

echo "I is one";

else

if (i==2)

echo "I is two";

else

if (i==3)

echo "I is three";

else

echo "I is not one, two nor three";

This can also be done by using switch statement. You can put multiple
if/else one after another.

ifExample2.con

class Main {

Main() {

var i=2;

switch (i) {

case 1:

echo "I is one";

break;

case 2:

echo "I is two";

4.6. LOOPS AND CONDITIONS 61

break;

case 3:

echo "I is three";

break;

default:

echo "I is not one, two, or three";

}

}

}

will output

I is two

Note the break after each case code. This is in order to prevent execution
of the next branch. The default is executed if no other case branch is
executed.

switch (i) {

case 1:

echo "I is one";

case 2:

echo "I is two";

case 3:

echo "I is three";

default:

echo "I is not one, two, or three";

}

will output

I is two

I is three

I is not one, two, or three

Case values can be anything (even expressions). Unlike C/C++ case, is
not limited to constants. Case labels should be unique, but the concept
core does not explicitly check for this, because labels are not limited to
constants (like in C).

switch (expr) {

62 CHAPTER 4. LANGUAGE

case "a string":

echo "expr is a string";

break;

case 2:

echo "expr is two";

break;

case 2+1:

echo "I is three";

break;

}

Note that if i wold be 0(null, false), the first branch of the switch will be
considered true, because i is a number of zero value, and ”a string” would
evaluate to 0 as a number.

Concept also uses three types of loops:

1. while

2. do .. while

3. for

Keep in mind that a program spends most of its time in loops, and I
recommend you to write carefully your loops.

while loops are initial-test loops, meaning that it will be executed only if
the given condition is true.

whileExample.con

class Main {

Main() {

var i=10;

while (i--) {

echo i;

echo " ";

}

}

}

outputs

4.6. LOOPS AND CONDITIONS 63

9 8 7 6 5 4 3 2 1 0

When i becomes 0, it will be evaluated to false and the loop will end.

do..while are final-test loops. The same example modified to a end-loop
test.

dowhileExample.con

class Main {

Main() {

var i=10;

do {

echo i;

echo " ";

} while (i--);

}

}

outputs

10 9 8 7 6 5 4 3 2 1 0

Note that the test being done at the end, we have one more iteration.
End-test are executed at least once.

for loops are similar with while loops, but have three parts: initialization
expression, loop condition, and increment expression.

class Main {

Main() {

for (var i=0;i<10;i++) {

echo i;

echo " ";

}

}

}

outputs

0 1 2 3 4 5 6 7 8 9

64 CHAPTER 4. LANGUAGE

You can have multiple initializations or increment expressions separated by
comma.

class Main {

Main() {

for (var i=0, var j=0;i<10 && j<5;i++,j+=2) {

echo i;

echo " ";

}

}

}

outputs

0 1 2

As a note, if you want to initialize an array to a specific value, you can use:

for (var i=0;i<arr;i++) {

arr[i]=true;

This type of loop is detected by the JIT optimizer, and is executed very
efficient.

Regardless its type, a loop can be interrupted by the use of the break
keyword. Also, can skip the rest of the loop inner code by the use of the
continue keyword.

class Main {

Main() {

var i=10;

while (true) {

echo i;

echo " ";

i--;

if (!i)

break;

}

echo "\n";

4.7. EXCEPTIONS 65

for (var j=0;j<10;j++) {

if (j % 2)

continue;

echo j;

echo " ";

}

}

}

outputs

10 9 8 7 6 5 4 3 2 1

0 2 4 6 8

Note that in the for-loop we skip the odd numbers and continue to next
iteration.

4.7 Exceptions

Concept exceptions are similar with those used by C++ and Java, with
the difference that they are not defined by data type. Constructors and
destructors are not allowed to throw exceptions because the core will end
up with a partially initialized object.

If you don’t catch an exception in the calling function, it will be re-thrown
until caught. If not caught, will cause program termination with an
un-caught exception run-time error.

ExceptionExample.con

class Main {

foo(i) {

if (i==0)

throw "Division by zero";

return 1/i;

}

Main() {

try {

foo(0);

66 CHAPTER 4. LANGUAGE

} catch (var Exception) {

echo Exception;

}

}

}

outputs

Division by zero

In practice, you will probably encapsulate exceptions in objects.

class MyException {

var Code;

var Description;

MyException(code, description) {

this.Code = code;

this.Description = description;

}

}

[...]

try {

[...]

throw new MyException(1, "Division by zero");

[...]

} catch (var Exception) {

echo Exception.Description;

}

[...]

If foo throws an exception being called by foo2, which doesn’t catch the
exception, and foo2 is called by foo3 which has a try/catch block eclosing
the call to foo2, the exception will end up in foo3’s catch block.

Each try must have exactly one corresponding catch block. You cannot
have multiple catch blocks.

4.8. INCLUDE AND IMPORT 67

4.8 Include and import

A project will have many sources and will use many modules. Note that
include, import and define can be used only outside class definition. define
will create a compile-time constant that will be replaced by the parser with
the given value.

For including another source, you may use the include statement like this:

Test.con

define SOME_CONSTANT 10

class Test {

var SomeMember;

}

TestInclude.con

include Test.con

class Main {

Main() {

var t=new Test();

t.SomeMember = SOME_CONSTANT;

}

}

import is similar with include, but instead of Concept sources, it imports
binary modules.

TestImport.con

import standard.lib.str

class Main {

Main() {

echo ToUpper("The quick brown fox jumps over the lazy dog");

}

}

68 CHAPTER 4. LANGUAGE

Will output:

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

The ToUpper function is a native function written in C and defined in
standard.lib.str. It takes one parameter, a string, and returns the a new
string containing the uppercase version of the given parameter.

Chapter 5

Classes and objects

Classes actually define data structures with or without various operations
attached. A class itself does not contain any data. Is more like a
specification of a data type.

Concept is a strict object-oriented languages, meaning that every function
or variable must be part of a class.

Classes are declared using the “class” keyword. Objects are created from
classes using the “new” operator.

A class may have a constructor and a destructor. The constructor is called
when you instantiate the class using “new”, and the destructor is called
just before the memory associated with the object is freed. Remember
that both constructors and destructors are not allowed to throw
exceptions. You can’t have two ore more members with the same name in
the same class. You can override a member by using the “override”
keyword (will be discussed in the next sections).

class A {

A() {

// nothing

}

}

[...]

var a=new A();

69

70 CHAPTER 5. CLASSES AND OBJECTS

[...]

In the given example, a is an object and A is a class.

5.1 Member variables

A member variable is declared using the “var” keyword (short for
variant). An array can be declared using “var[]”. You can assign default
static values to a class member. Static values are limited to strings and
numbers. A default value must be a constant(no expressions allowed). For
other data types (array, objects and delegates) you can assign default
values in a constructor.

TestVarMember.con

class Person {

var Name="Uknown";

var[] SomeArray;

var Age;

}

class Main {

Main() {

var p=new Person();

echo "Default name: ${p.Name}\n";

p.Name="Eduard";

echo "New name: ${p.Name}\n";

}

}

Will output:

Default name: Unknown

New name: Eduard

5.2. FUNCTION MEMBERS 71

5.2 Function members

Function members are declared using the optional keyword “function”. It
can have a maximum of 65535 parameters. Each parameter may have a
default value, which must be a static constant(string or number). Note
that after a member that has a default value, all the following members
must have default values.

FunctionMemberExample.con

class Main {

function foo(a, b, c, d=4, e=5) {

echo "$a, $b, $c, $d, $e\n";

}

function Main() {

this.foo(1, 2, 3);

}

}

Will output:

1, 2, 3, 4, 5

Also, function member can have type validation. Type validations can be
”number”, ”string”, ”array”, ”delegate”, ”object” or a class name.

A function can return any kind of variable using the “return” keyword. If
a function has no return statement, it will automatically return zero
(null/false).

FunctionMemberExample2.con

class SomeClass {

var SomeValue=1;

}

class Main {

foo(SomeClass a, string b, number c, object d, array e) {

var result=a.SomeValue + b + c + d.SomeValue + e[0];

return result;

}

72 CHAPTER 5. CLASSES AND OBJECTS

Main() {

var d=new SomeClass();

d.SomeValue=4;

echo "Result is: "+this.foo(new SomeClass(), "2", 3, d, [5]);

}

}

Will output:

Result is: 15

Note that in the previous example, the function keyword was omitted. A
member with no other specifier is assumed to be a function.

You may have referenced parameters (or OUT parameters) if you use the
“var” prefix. Also, when a member is called within it’s own class, you may
call it without the “this” reference(instead of this.foo you can simple use
foo). Note that if you have a local variable called foo, then this would be
mandatory, because local variable are checked first by the compiler.

FunctionMemberExample3.con

class Main {

foo(a, var b, c) {

a++;

b++;

c++;

}

Main() {

var a=1, b=2, c=3;

foo(a, b, c);

echo "A is $a, B is $b, C is $c";

}

}

Will output:

A is 1, B is 3, C is 3

5.3. CONSTRUCTOR AND DESTRUCTOR 73

In foo, all the parameters are incremented, but only b has the var
specifier. After calling foo, you noticed that only b has a new value. a and
c where copied in foo, but

¯
was referenced, so any changed made in foo,

was reflected in the calling function.

Note that array, objects and delegates are not copied. When an object is
passed as a parameter, the variable is copied, but the variable itself is a
reference to the object.

5.3 Constructor and destructor

Constructors and destructors are special functions that are called
automatically when creating, respectively destroying an object. A class
can have only one constructor and/or only one destructor.

constructorExample.con

class A {

var SomeValue;

A(number a_value) {

this.SomeValue=a_value;

}

}

class Main {

Main() {

var a=new A(10);

}

}

Creating object a will automatically call A::A(number a value).
Remember that a constructor is not allowed to throw exception.

Destructors are special functions named “finalize”. A destructor cannot
take parameters and is not allowed to throw an exception. Also, there is
no explicit guarantee that it will be called, like the case of the constructor.

destructorExample.con

74 CHAPTER 5. CLASSES AND OBJECTS

class A {

doSomethingWithA() {

echo "Do something with a\n";

}

finalize() {

echo "A is about to be destroyed";

}

}

class Main {

Main() {

var a=new A();

a.doSomethingWithA();

}

}

Output:

Do something with a

A is about to be destroyed

5.4 Properties

Properties are special members declared with property keyword that have
two methods - get and set. A property may be read-only or read-write. A
property is useful when you want to implement validations to a member
variable.

propertyExample.con

class A {

var _SomeValue;

property SomeValue { get _SomeValue, set SetSomeValue }

function SetSomeValue(number val) {

if (val==0)

throw "SomeValue cannot be zero";

this._SomeValue=val;

}

5.5. ACCESS CONTROL 75

}

class Main {

Main() {

var a=new A();

try {

a.SomeValue=1;

echo a.SomeValue;

echo "\n";

a.SomeValue=0;

} catch (var Exception) {

echo Exception;

}

}

}

Output:

1

SomeValue cannot be zero

get statament is mandatory for every property, but set is optional. A
property that has no set method, it is called a read-only property.

Both get and set can reference either a member variable or a function. It
cannot reference another property.

5.5 Access control

Class members(variables, functions and properties) can have three access
specifiers:

public
the member is accessible by any other objects. This is the default
acces (if not specified, public is to be assumed)

private
the member is accessible only by the same class

76 CHAPTER 5. CLASSES AND OBJECTS

protected
the member is accessible only by the same class and its subclasses

accessExample.con

class A {

private var _SomeValue;

public property SomeValue { get _SomeValue, set SetSomeValue }

private SetSomeValue(number val) {

this._SomeValue=val;

}

}

class Main {

Main() {

var a=new A();

a.SomeValue=1;

}

}

In this example, the access to SomeValue is mediated by the public
SomeValue property. If we try to execute a. SomeValue=1 from the Main
class, you will get a run-time error.

In accessExample.con:

In class A:

In member A.A:

0. E190 on line 14: You can’t access a private member of a

class (’_SomeValue’)

There are RUN-TIME errors.

protected access a combination of private and public. The member is
accessible for subclasses, but private for any other class. You will learn in
the next sections about inheritance.

protectedExample.con

class A {

protected var _SomeValue;

public property SomeValue { get _SomeValue, set SetSomeValue }

5.6. STATIC MEMBERS 77

private SetSomeValue(number val) {

this._SomeValue=val;

}

}

class B extends A {

public AccessTest(number val) {

this._SomeValue=val;

}

}

class Main {

Main() {

var a=new B();

a.AccessTest(1);

}

}

The value of SomeValue will be 1. class B is able to access the protected
member SomeValue defined in class A because B is a child of A. However,
class Main can’t access it.

5.6 Static members

Static functions are not linked with an actual object. Only functions can
be declared static, and the use of this is not allowed. Everything else
works just like an ordinary function. You can even set access control for a
static function.

staticExample.con

class A {

static function Print(string message) {

echo message;

}

}

class Main {

Main() {

A.Print("Hello world!");

// exactly the same as

78 CHAPTER 5. CLASSES AND OBJECTS

// A::Print("Hello world!");

}

}

outputs:

Hello world!

Note that you can use :: instead of . when dealing with static members.

Note that you didn’t have to create an object of type A. If you use var
a=new A() you will be able to call Print like a standard member function
- a.Print(..).

Static functions cannot be referenced by delegates, unless you associate the
function with an actual object. It would be illegal in the above example to
set var d=A.Print. Instead you can achieve this this way:

[...]

static function Print(string message) {

echo message;

}

[...]

var a=new A();

var deleg=a.Print;

[...]

5.7 Virtual members and overriding

In Concept, any class member can be overridden, implicitly making it
virtual. We will call virtual members, the functions without body
(pure-virtual). There are two ways of implementing this. You can define a
function without a body, and then, in a subclass, you can override and
implement that method, by using the override keyword.
virtualExample.con

class A {

function SomeTest();

}

5.7. VIRTUAL MEMBERS AND OVERRIDING 79

class B extends A {

override SomeTest;

function SomeTest() {

echo "Some test";

}

}

class Main {

Main() {

var b=new B();

b.SomeTest();

}

}

In this case, A.SomeTest is a pure virtual function. However, A’s
SomeTest may have actual code.

virtualExample2.con

class A {

function SomeTest() {

echo "A’s some test";

}

}

class B extends A {

override SomeTest;

function SomeTest() {

echo "B’s some test\n";

// call previous function

A::SomeTest();

}

}

class Main {

Main() {

var b=new B();

b.SomeTest();

}

}

Outputs:

80 CHAPTER 5. CLASSES AND OBJECTS

B’s some test

A’s some test

Note that when referencing a previous overriden member, in a class that
has an implemented constructor, “::” is mandatory for avoiding
member/class auto-reference ambiguity. If “.” would be used, the Concept
Parser will resolve the class name to its constructor, assuming that we
want to call or reference it.

A.SomeTest is not a static function call. Is a call to the previous
implementation of SomeTest, the one in class A. Note, you can use ::
instead of . in A::SomeTest(). The call to the previous implementation can
be made from any function defined in B or it’s subclasses.

Notes that when overriding constructors and destructors, you must
explicitly call the previous implementation, if needed.

The second method of creating virtual function is by using the event ...
triggers construct. This creates an alias for a function that must be
implemented in a subclass.

virtualExample3.con

class A {

event SomeTest triggers SomeTestImplementation;

}

class B extends A {

function SomeTestImplementation() {

echo "SomeTestImplementation\n";

}

}

class Main {

Main() {

var b=new B();

b.SomeTest();

}

}

Outputs:

5.8. OPERATOR OVERLOADING 81

SomeTestImplementation

When calling SomeTest, defined in A, the core will look for a member
called SomeTestImplementation. If the member is implemented, then it
will be executed.

When using this kind of alias, is not mandatory for the trigger function to
be implemented. If the trigger function is not implemented, nothing will
happen, assuming that is called without any parameter. If the function
takes parameters, you will have a parameter count run-time error when
SomeTestImplementation is not implemented.

5.8 Operator overloading

Most of the Concept operators can be implemented in classes. Refer to
sections “Unary operators” and “Binary operators” to see which one can
be implemented.

An operator can be defined using the “operator” keyword. Operators
obey the same rules as any other function, except that binary operators
must take exactly one parameter and unary operators must take no
parameters. You may also use access control with an operator making it
private, protected or public. By default they are public, like any other
member.

operatorExample.con

class Integer {

private var _i;

Integer(number val=0) {

_i=val;

}

operator+(a) {

echo "Using overloaded operator\n";

var ival;

switch (typeof a) {

case "number":

82 CHAPTER 5. CLASSES AND OBJECTS

ival=a;

break;

case "string":

ival=value a;

break;

case "array":

ival=a[0];

break;

case "class":

if (classof a=="Integer") {

ival=a._i;

break;

}

default:

throw "Invalid data type";

}

return new Integer(ival + this._i);

}

operator!() {

if (!_i) {

echo "NOT Integer is true\n";

return true;

}

echo "NOT Integer is false\n";

return false;

}

ToNumber() {

return _i;

}

}

class Main {

Main() {

var a=new Integer(1);

var b=new Integer(2);

var c=a+b;

echo "Result is: "+c.ToNumber()+"\n";

echo "Result of !c: "+!c;

}

}

Outputs:

5.9. DUCK TYPING 83

Using overloaded operator

Result is: 3

NOT Integer is false

Result of !c: 0

The =& (reference assignment) cannot be overloaded, in order for the
programmer to have a mechanism of forcing a reference assignment.

5.9 Duck typing

In computer programming with object-oriented programming languages,
duck typing is a style of typing in which an object’s methods and
properties determine the valid semantics, rather than its inheritance from
a particular class or implementation of a specific interface. The name of
the concept refers to the duck test, attributed to James Whitcomb Riley,
which may be phrased as follows:

When I see a bird that walks like a duck and swims like a duck and quacks
like a duck, I call that bird a duck.

In duck typing, one is concerned with just those aspects of an object that
are used, rather than with the type of the object itself. For example, in a
non-duck-typed language, one can create a function that takes an object of
type Duck and calls that object’s walk and quack methods. In a
duck-typed language, the equivalent function would take an object of any
type and call that object’s walk and quack methods. If the object does not
have the methods that are called then the function signals a run-time
error. If the object does have the methods, then they are executed no
matter the type of the object, evoking the quotation and hence the name
of this form of typing.

Duck typing is aided by habitually not testing for the type of arguments in
method and function bodies, relying on documentation, clear code and
testing to ensure correct use.

duckExample.con

class Duck {

84 CHAPTER 5. CLASSES AND OBJECTS

quack() {

echo "Quaaaaaack!";

}

feathers() {

echo "The duck has white and gray feathers.";

}

}

class Person {

var name="John Smith";

quack() {

echo "The person imitates a duck.";

}

feathers() {

echo "The person takes a feather from the ground and shows

it.";

}

}

class Main {

in_the_forest(duck) {

duck.quack();

echo "\n";

duck.feathers();

}

Main() {

var donald=new Duck();

var john=new Person();

in_the_forest(donald);

echo "\n";

in_the_forest(john);

}

}

Outputs:

Quaaaaaack!

The duck has white and gray feathers.

The person imitates a duck.

The person takes a feather from the ground and shows it.

5.10. INHERITANCE - SIMPLE AND MULTIPLE 85

5.10 Inheritance - simple and multiple

A Concept class can inherit one or more base classes using the “extends”
keyword. All Concept classes are inheritable. inheritanceExample.con

class Vegetable {

public var edible;

public var color;

Vegetable(edible,color) {

this.edible = edible;

this.color = color;

}

}

class Spinach extends Vegetable {

public var cooked;

Spinach() {

this.cooked=0;

// call previous constructor

this.Vegetable(1,"green");

}

CookIt() {

this.cooked = 1;

}

}

class Main {

Main() {

var test=new Spinach();

echo "---- Vegetable and Spinach ---\n";

echo "Color : "+test.color+"\n";

var edible=test.edible;

if (!edible)

edible="no";

else

edible="yes";

echo "Edible : "+edible+"\n";

echo "-------- Only Spinach --------\n";

86 CHAPTER 5. CLASSES AND OBJECTS

var cooked=test.cooked;

if (!cooked)

cooked="no";

else

cooked="yes";

echo "Cooked : "+cooked+"\n";

echo "Cooking ...\n";

test.CookIt();

cooked=test.cooked;

if (!cooked)

cooked="no";

else

cooked="yes";

echo "Cooked : "+cooked;

}

}

Outputs:

---- Vegetable and Spinach ---

Color : green

Edible : yes

-------- Only Spinach --------

Cooked : no

Cooking ...

Cooked : yes

Note that when in single class inheritance, you may use the reserved word
super instead of this.Vegetable to reference the superclass’ constructor.

Spinach() {

// call the previous constructor

super(1,"green");

this.cooked=0;

}

5.11. ANONYMOUS FUNCTIONS 87

A Concept class can inherit more than one superclass. It can’t inherit two
classes, each of them having a member with a name that can be found in
the other class, because it will generate a naming conflict(this will generate
compile-time error).

class A {

A() {

echo "A";

}

}

class B {

B() {

echo "B";

}

}

class C extends A extends B {

C() {

this.A();

this.B();

echo "C";

}

}

class Main {

Main() {

var c=new C();

}

}

Outputs:

ABC

5.11 Anonymous functions

An anonymous function, also called a lambda function, are a form of
nested function, that have no name. In reality, the Concept Core will
create a standard function, that will be executed by the Concept Core like

88 CHAPTER 5. CLASSES AND OBJECTS

a typical function. Its access rights will be the same with the function
defining the lambda function.

There are two types of lambda functions: with parameters or without any
input parameters. Note that these function cannot access the variables
defined in the defining function. A lambda function definition will always
create a delegate variable.

A parameterless lambda function can be defined as:

LambdaTest.con

1 class Main {

2 Main() {

3 var foo = { echo "Hello World!"; };

4 foo();

5 }

6 }

When parameters are needed, it can be defined using the function
keyword:

LambdaTest2.con

1 class Main {

2 Main() {

3 var foo = function(msg) { echo msg; };

4 foo("Hello world!");

5 }

6 }

A Concept anonymous function cannot access local variables, but can
access object variables. In the previous example, assuming that Main is
not defined static (case being, all the lambda function will be considered
static), the lambda functions will be able to access any of the Main
members.

LambdaTest3.con

1 class Main {

2 var msg = "Hello World!";

3

5.11. ANONYMOUS FUNCTIONS 89

4 Main() {

5 var foo = { echo this.msg; };

6 foo();

7 }

8 }

Anonymous function have different names on various programming
languages. You may know them as closure, blocks, inline agents or
function objects.

This is a relatively new feature for Concept being first available on version
2.8. However, code compiled with a 2.8 compiler using lambda functions
will run with no problem on any previous version of Concept.

90 CHAPTER 5. CLASSES AND OBJECTS

Chapter 6

Static functions

Concept core is able to run any native function. Native functions can be
written in languages like C and C++. These are the only functions that
are not bound to a class. Concept uses an Invoke function that enables the
called function to communicate with the core. In the Concept distribution
package you will find two files - stdlibrary.h and stdlibrary.cpp. These files
define all the structures and macros you will need to create a static
function.

The Invoke function has the following prototype:

INTEGER Invoke(INTEGER INVOKE TYPE, ...);

For each INVOKE TYPE you have a list of parameters:

INVOKE SET VARIABLE (void *variable, INTEGER type, char
*str, NUMBER n)
Sets a variable type and value

INVOKE GET VARIABLE (void *variable, INTEGER *type, char
**str, NUMBER *n)
Gets a variable type and value

INVOKE SET CLASS MEMBER (void *object, char *mname,
INTEGER type, char *str, NUMBER n)
Sets value and type for a class member (var)

91

92 CHAPTER 6. STATIC FUNCTIONS

INVOKE GET CLASS MEMBER (void *object, char *mname,
INTEGER *type, char **str, NUMBER *n)
Gets value and type for a class member (var)

INVOKE GET CLASS VARIABLE (void *variable, char *mname,
void **membervariable)
Gets a variable from an object as a handle

INVOKE FREE VARIABLE (void *variable)
Reduces the link count for a variable by 1, and frees the memory if it
reaches 0

INVOKE CREATE ARRAY (void *variable)
Creates an array in the specified variable

INVOKE ARRAY VARIABLE (void *variable, INTEGER index,
void **var element)
Gets a handle to a variable from an array by index

INVOKE ARRAY VARIABLE BY KEY (void *variable, char *key,
void **var element)
Gets a handle to a variable from an array by key

INVOKE GET ARRAY ELEMENT (void *variable, INTEGER
index, INTEGER *type, char **str, NUMBER *n)
Gets an array element by index

INVOKE SET ARRAY ELEMENT (void *variable, INTEGER
index, INTEGER type, char *str, NUMBER n)
Sets an array element by index

INVOKE GET ARRAY COUNT (void *variable)
Returns the array element count

INVOKE GET ARRAY ELEMENT BY KEY (void *variable, char
*key, INTEGER *type, char **str, NUMBER *n)
Gets an array element by key

INVOKE SET ARRAY ELEMENT BY KEY (void *variable, char
*key, INTEGER type, char *str, NUMBER n)
Sets an array element by index

INVOKE CALL DELEGATE (void *var delegate, void **result, void
**exception, INTEGER param count>=0, [INTEGER type, char

93

*str, NUMBER n,]). It can be called using a null-terminated array
of variables (void *var delegate, void **result, void **exception,
INTEGER param count=-1, void *parameters[], (void *)NULL);
Calls a delegate (received as a parameter)

INVOKE COUNT DELEGATE PARAMS (void *var delegate)
Returns the parameters count of a delegate

INVOKE LOCK VARIABLE (void *variable)
Increments the link-count for a variable. Use free variable for
decrementing the links

INVOKE GET ARRAY KEY (void *arr variable, INTEGER index,
char **key)
Gets the key for the specified index of an array

INVOKE GET ARRAY INDEX (void *arr variable, char *key,
INTEGER *index)
Gets the index for the specified key

INVOKE CREATE VARIABLE (voir **variable)
Creates a Concept variable

INVOKE DEFINE CONSTANT (CONTEXT, char *name, char
*value)
Defines a Constant. This function can be called only from
ON CREATE CONTEXT (before the program is actually executed)

INVOKE DEFINE CLASS (CONTEXT, char *class name, char
*member name1, ..., char *member nameN, (char *)NULL)
Defines a class

INVOKE CREATE OBJECT (CONTEXT, void *variable, char
*class name)
Creates an object

INVOKE GET MEMBER FROM ID (void *object ref, intptr t
member id, char **member name)
Gets a class member from an ID

INVOKE DYNAMIC LOCK (void *variable)
Increases the class/delegate/array links count, without increasing the
variable link count

94 CHAPTER 6. STATIC FUNCTIONS

INVOKE HAS MEMBER (void *object ref, char *member name)
Check if class’s object has a specific member

INVOKE OBJECT LINKS (void *variable)
Returns the object link count

INVOKE VAR LINKS (void *variable)
Returns the variable link count

INVOKE CLI ARGUMENTS (intptr t *argc, char ***argv)
Gets the command line arguments

INVOKE SORT ARRAY BY KEYS (void *in array object, void
*out sorted array object)
Creates a new array sorted by the given array keys

INVOKE CHECK POINT (int seconds)
Sets the application operation timeout in seconds. If set to 0, the
timeout will be infinite

INVOKE ARRAY ELEMENT IS SET (void *variable, INTEGER
index, char *key)
Check if an array element is set. If index >= 0, then the index will
be checked, else, if index <0, the key will be used

INVOKE GET DELEGATE NAMES (void *delegate variable, char
**class name, char **member name)
Gets the delegate class name and member name

INVOKE GET USERDATA (CONTEXT, void **userdata)
Gets the user data associated with the core

INVOKE GET THREAD DATA (void **data)
Get the data associated with the thread

INVOKE SET THREAD DATA (void *data)
Set the data associated with the thread

INVOKE NEW BUFFER (INTEGER size, char **buffer)
Allocates a new core buffer

INVOKE DELETE BUFFER (char *buffer)
Deletes a core buffer

95

INVOKE PRINT (CONTEXT, char *what, INTEGER what len)
Outputs to stdout a string.

INVOKE CALL DELEGATE THREAD (void *var delegate, void
**result, void **exception, INTEGER param count>=0, [INTEGER
type, char *str, NUMBER n,]). It can be called using a
null-terminated array of variables (void *var delegate, void **result,
void **exception, INTEGER param count=-1, void *parameters[],
(void *)NULL);
Calls a delegate in a new thread

INVOKE CALL DELEGATE THREAD SAFE (void
*var delegate, void **result, void **exception, INTEGER
param count>=0, [INTEGER type, char *str, NUMBER n,]). It
can be called using a null-terminated array of variables (void
*var delegate, void **result, void **exception, INTEGER
param count=-1, void *parameters[], (void *)NULL);
Calls a delegate in a new thread, using semaphores for safe call

INVOKE CREATE DELEGATE (void *class variable, void
*delegate variable, char *member name)
Creates a delegate

INVOKE FREE VARIABLE REFERENCE (void *variable)
Frees a variable regarding of its link count. WARNING: you should
avoid using this function

INVOKE THREAD LOCK (void *class or delegate variable)
Locks/unlock an internal semaphore used for synchronizing threads

INVOKE EXTERNAL THREADING (void
*class or delegate variable)
Increments the core thread count reference

Variable type can be: VARIABLE NUMBER, VARIABLE STRING,
VARIABLE CLASS, VARIABLE ARRAY or VARIABLE DELEGATE

Invoke will return a value equal or greater than zero if succeeded, or a
negative value if it failed. The returned errors are
CANNOT INVOKE INTERFACE(-10),
INVALID INVOKE PARAMETER(-20) or
CANNOT INVOKE IN THIS CASE(-30).

96 CHAPTER 6. STATIC FUNCTIONS

A C function wrapper must contain NULL in case of success or a
human-readable, zero-terminated string describing the error in case of
error.

6.1 Mapping a simple C function

A set of macros defined in stdlibrary.h helps you map with minimum effort
a C function. For that, you must create two files: a .h (header file) and a
.cpp (C++ source file).

All Concept modules must use the C calling convention.

The CONCEPT FUNCTION(function name) macro it’s a convenient way
to declare a function in a header file. In the source file you must use
CONCEPT FUNCTION IMPL(function name, parameters count),
CONCEPT FUNCTION IMPL VARIALBE PARAMS(function name,
min parameters count) or
CONCEPT FUNCTION IMPL MINMAX PARAMS(function name,
min parameters count, max parameters count).

Note that concept function are prefixed by the “CONCEPT ” prefix in
order to avoid conflicts with existing C functions. The native name for the
CONCEPT FUNCTION(divide) will be CONCEPT divide.

library.h

#ifndef __LIBRARY_H

#define __LIBRARY_H

// provided with concept, defines all

// the macros and data structures

#include "stdlibrary.h"

extern "C" {

// optional functions called automatically when library is

loaded

CONCEPT_DLL_API ON_CREATE_CONTEXT MANAGEMENT_PARAMETERS;

CONCEPT_DLL_API ON_DESTROY_CONTEXT MANAGEMENT_PARAMETERS;

CONCEPT_FUNCTION(divide)

CONCEPT_FUNCTION(sum)

6.1. MAPPING A SIMPLE C FUNCTION 97

CONCEPT_FUNCTION(stringTest)

}

#endif

main.cpp

#include "library.h"

#define SOME_CONSTANT 100

CONCEPT_DLL_API ON_CREATE_CONTEXT MANAGEMENT_PARAMETERS {

// this is called when library is first loaded

DEFINE_ECONSTANT(SOME_CONSTANT)

DEFINE_SCONSTANT("SOME_STRING_CONSTANT", "Hello world!")

DEFINE_ICONSTANT("SOME_INTEGER_CONSTANT", 1)

DEFINE_FCONSTANT("SOME_FLOAT_CONSTANT", 1.2)

return 0;

}

CONCEPT_DLL_API ON_DESTROY_CONTEXT MANAGEMENT_PARAMETERS {

// this is called when library is unloaded

return 0;

}

CONCEPT_FUNCTION_IMPL(divide, 2)

T_NUMBER(0)

T_NUMBER(1)

if (PARAM(2)==0)

return (void *)"divide: Division by zero";

NUMBER res=PARAM(0)/PARAM(2);

RETURN_NUMBER(res)

END_IMPL

CONCEPT_FUNCTION_IMPL_VARIABLE_PARAMS(sum, 0)

double sum=0;

for (int i=0;i<PARAMETERS_COUNT;i++) {

T_NUMBER(i)

sum+=PARAM(i);

}

RETURN_NUMBER(sum)

END_IMPL

98 CHAPTER 6. STATIC FUNCTIONS

CONCEPT_FUNCTION_IMPL(stringTest, 1)

T_STRING(0)

char *param=PARAM(0);

int param_len=PARAM_LEN(1);

RETURN_BUFER(param, param_len)

END_IMPL

We defined here two functions: divide(a, b), computes a/b and sum(...),
computes p1+p2...pn.

After compiling with a C++ compiler, we can use the following Concept
program to invoke these functions, assuming our library was compiled to
mylibrary (see section Modules for more information).

The resulting mylibrary.dll or mylibrary.so must be placed either in the
Concept Application Server Library directory or in your application’s
directory. Note that the core will search a library in Library first, and the
in the current directory.

import mylibrary

class Main {

Main() {

echo "1/2 = " + divide(1,2) + "\n";

echo "1+2+3+4+5 = " + sum(1,2,3,4,5) + "\n";

echo stringTest(SOME_STRING_CONSTANT);

}

}

will output

1/2 = 1.5

1+2+3+4+5 = 15

Hello world!

Note that RETURN NUMBER, doesn’t end the function execution. You
must call return 0 in order to end the execution. RETURN macros just
set the result to the given value.

6.2. WORKING WITH ARRAYS 99

There are a few RETURN macros: RETURN NUMBER(double),
RETURN STRING(char *), RETURN BUFFER(char *, int len),
RETURN ARRAY(array object). You can modify an input parameter by
using SET NUMBER(parameter index, double),
SET STRING(parameter index, char *), SET BUFFER(parameter index,
char *, INTEGER len).

The macros T NUMBER(parameter index), T STRING(parameter index),
T ARRAY(parameter index), T OBJECT(parameter index),
T DELEGATE(parameter index) and T HANDLE(parameter index)
perform a type check for the given parameter index, returning an error on
type mismatch. Also, these macros create the PARAM(parameter index)
(and PARAM LEN(parameter index) for string parameters) access
variables.

Note that when using RETURN BUFFER, if len is 0, the given char *
parameter must be null terminated. If you want to return a NULL string,
RETURN STRING(””) is the correct way to do it.

6.2 Working with arrays

stdlibrary.h provides a few macros that help you dealing with arrays. For
creating arrays, we have the CREATE ARRAY(variable) macro. For
example, if we want to return an array, we can use
CREATE ARRAY(RESULT). If we want to use a parameter as an out
value, CREATE ARRAY(PARAMETERS(0)) for parameter 1 (first
parameter has 0 index, second 1).

library.h

#ifndef __LIBRARY_H

#define __LIBRARY_H

// provided with concept, defines all

// the macros and data structures

#include "stdlibrary.h"

extern "C" {

CONCEPT_FUNCTION(CreateArrayByElements)

CONCEPT_FUNCTION(AddVariableKey)

100 CHAPTER 6. STATIC FUNCTIONS

CONCEPT_FUNCTION(CreateMatrix)

}

#endif

main.cpp

#include "library.h"

CONCEPT_FUNCTION_IMPL_VARIABLE_PARAMS(CreateArrayByElements, 0)

CREATE_ARRAY(RESULT)

for (int i=0;i<PARAMETERS_COUNT;i++) {

T_NUMBER(i)

Invoke(INVOKE_SET_ARRAY_ELEMENT, RESULT, (INTEGER)i,

(INTEGER)VARIABLE_NUMBER, "", PARAM(i));

}

END_IMPL

CONCEPT_FUNCTION_IMPL(AddVariableKey, 3)

T_ARRAY(0)

T_STRING(1)

T_NUMBER(2)

Invoke(INVOKE_SET_ARRAY_ELEMENT_BY_KEY, PARAMETER(0), PARAM(1),

(INTEGER)VARIABLE_NUMBER, "", PARAM(2));

RETURN_NUMBER(0)

END_IMPL

CONCEPT_FUNCTION_IMPL(CreateMatrix, 2)

T_NUMBER(0)

T_NUMBER(1)

CREATE_ARRAY(RESULT)

int lines = PARAM_INT(0);

int columns = PARAM_INT(1)

for (INTEGER i=0;i<lines;i++) {

void *line;

Invoke(INVOKE_ARRAY_VARIABLE, RESULT, index, &line);

CREATE_ARRAY(line)

for (INTEGER j=0;j<columns;j++) {

Invoke(INVOKE_SET_ARRAY_ELEMENT, line, (INTEGER)i,

(INTEGER)VARIABLE_NUMBER, "", (NUMBER)0);

6.3. WORKING WITH OBJECTS 101

}

}

END_IMPL

After compiling the library, under the name myarraylibrary(.dll/.so), you
can call the functions using:

import myarraylibrary

class Main {

Main() {

var[] arr;

var elements=CreateArrayByElements(1,2,3);

AddVariableKey(arr, "Key 1", 1)

AddVariableKey(arr, "Key 2", 2)

var matrix=CreateMatrix(3, 3);

}

}

elements will be an array containing [1, 2, 3]. arr will have [”Key 1”: 1,
”Key 2”: 2] and matrix will be a matrix of 3 by 3 containing zeros.

Note that you cannot remove elements from an array. If you need to delete
an element from an array, you must create a new one and import all but
the delete element from the initial array.

6.3 Working with objects

C static function can access concept data members, delegates and define
new classes. Although is easily possible to create a class from a static C
function, I wouldn’t recommend it, because the structure of the class won’t
be visible to the programming.

library.h

#ifndef __LIBRARY_H

#define __LIBRARY_H

102 CHAPTER 6. STATIC FUNCTIONS

// provided with concept, defines all

// the macros and data structures

#include "stdlibrary.h"

extern "C" {

CONCEPT_FUNCTION(CallDelegate)

CONCEPT_FUNCTION(GetValueOf)

}

#endif

main.cpp

#include "library.h"

CONCEPT_FUNCTION_IMPL(CallDelegate, 2)

T_DELEGATE(0)

void *RES=0;

void *EXCEPTION=0;

void *delegate_PARAMS[2];

delegate_PARAMS[0]=PARAMETER(1);

delegate_PARAMS[1]=0;

Invoke(INVOKE_CALL_DELEGATE, PARAMETER(0), &RES, &EXCEPTION,

(INTEGER)-1, delegate_PARAMS);

Invoke(INVOKE_FREE_VARIABLE, EXCEPTION);

Invoke(INVOKE_FREE_VARIABLE, RES);

RETURN_NUMBER(0)

END_IMPL

CONCEPT_FUNCTION_IMPL(GetValueOf, 2)

T_OBJECT(0)

T_STRING(1)

void *member;

if (!IS_OK(Invoke(INVOKE_GET_CLASS_VARIABLE, PARAM(0),

PARAM(1), &member)))

return (void *)"GetValueOf: Invalid member name";

INTEGER member_type=0;

char *member_szData;

NUMBER member_nData;

6.3. WORKING WITH OBJECTS 103

Invoke(INVOKE_GET_VARIABLE, member, &member_type,

&member_szData, &member_nData);

switch (member_type) {

case VARIABLE_NUMBER:

RETURN_NUMBER(member_nData)

break;

case VARIABLE_STRING:

// for strings, member_nData contains the length

RETURN_BUFFER(member_szData, member_nData);

break;

default:

return (void *)"GetValueOf: result is neither a number

nor a string";

}

END_IMPL

Note that if you want to retain a reference to the delegate parameter, for
calling it after the function execution ends, you must increase its reference
count by using:

Invoke(INVOKE LOCK VARIABLE, PARAMETER(0))

This will ensure that the variable won’t be freed by the time you need to
call the delegate.

After compiling the library, under the name mydelegatelibrary(.dll/.so),
you can call the functions using:

import myarraylibrary

class Main {

var someMember="... Hello to you too";

foo(msg) {

echo msg;

// get member by its name as a string

echo GetValueOf(this, "someMember");

}

Main() {

CallDelegate(this.foo, "Hello world!");

}

}

104 CHAPTER 6. STATIC FUNCTIONS

Will output ”Hello world! ... Hello to you too”. foo is called from a C
function invoked by Main (CallDelegate). Then, foo calls another C
function that gets the value of “someMember” in the current object (this).

You can combine this functions anyway you like. Note that some APIs
require an actual reference to an array or object. For example
INVOKE HAS MEMBER requires a reference to the actual object instead
of the variable holding that object. For that you can either use the
GET ARRAY(parameter index, void *object),
GET OBJECT(parameter index, void *object) (identical with
GET ARRAY) or GET DELEGATE(parameter index, void *object,
double delegate member) when referencing local parameters, or
Invoke(INVOKE GET VARIABLE, variable, INTEGER *type, char
**szData, double *nData). For objects (type is VARIABLE ARRAY,
VARIABLE CLASS or VARIABLE DELEGATE) in szData you will find
the object reference. Just cast it to a (void *). For delegates in nData you
will have the member identifier.

Chapter 7

Coding guidelines

Concept programming language does not define a coding standard.
However, a few tips will provide a consistent look to the code. I encourage
all Concept programmers to write based on this suggestions.

7.1 Indentation suggestions

I recommend the use of 4-spaces tab for each level of indentation. Each
begin bracket should be placed on the same line as its “owner”, rather that
on a new line.

if (a == 1) {

do_something();

do_something_more();

}

For on-line statements, it’s not recommended to use the brace (easier on
the eyes).

if (a == 1)

do_something();

Each begin brace ({) should be followed by a new line, and will generate a
new level of indentation(tab/4 spaces), except when defining properties.

105

106 CHAPTER 7. CODING GUIDELINES

if, else, while, do and for will generate a new level of indentation when not
using braces(when using just one statement, it should be indented by a
tab). if and else should always be on the same level.

class first_level {

property second_level_property { set x, get x }

second_level() {

if (third_level)

echo "fourth level";

}

}

When dealing with multiple if..else branches, I recommend that the branch
if should be on the next line after the previous else, instead of the same
line. In this case only, the previous else will not generate a new indentation
level(the following if will be on the same level with the previous else).

if (a == 1)

echo "A is one";

else

if (a == 2)

echo "A is two";

else

if (a == 3)

echo "A is three";

Each try..catch should have braces, regarding of the number of statements.
try and catch should always be on the same level.

try {

doSomething();

} catch (var exc) {

echo "Exception!";

}

switch will be always followed by a begin brace on the same line, and all
the following case and default on the same indentation level. Both case
and default should be immediately followed by “:”, a new line, and a new
indentation level.

7.1. INDENTATION SUGGESTIONS 107

switch (a) {

case 1:

echo "A is 1";

break;

case 2:

echo "A is 2";

break;

default:

echo "A is default";

}

Always write only one statement per line. When using if and while with
multiple conditions, enclose each condition by parenthesis.

while ((a > 0) && (a < 100))

doSomething();

Keep at least one line of space between each function, at least one blank
line between member variables and properties, pure virtual functions and
triggers. Use at least one blank line between properties and other kind of
member.

class A {

var _a;

var _b;

property a { get _a }

property b { get _b }

foo() {

echo "foo";

}

foo2() {

echo "foo";

}

}

When defining multiple variables or parameters, add a space after each
comma.

function foo(a, b, c=2, d) {

108 CHAPTER 7. CODING GUIDELINES

var e, f, g;

}

When declaring arrays, add a space after each comma. When defining a
matrix as an array of arrays, each matrix line should be on its own code
line.

var matrix = [[11, 12, 13, 14, 15],

[21, 22, 23, 24, 25]];

When initializing relatively small key-values arrays is better to have each
key on its own line.

[

"Key1": 1,

"Key2": 2,

"Key3": 3

];

Is better to avoid comments on the same line with a statement. I would
recommend the use of the line comment instead of the block comment
(“//” instead of “/* ... */”). Keep your comments lexically correct.
Comments should respect its current indentation level.

if (true) {

// This is how your comment should

// look like.

}

When possible, put spaces between the binary operators, except for
selectors(. -¿ and array[index]). Unary operators should not be followed
by any space. Operators and operands should be on the same line of code.
Avoid breaking small statements into multiple lines of code.

var b = 2;

var a = 1 + b;

var n = 0;

if ((a > 2) && (b < 3) && (!n))

echo "Here!";

7.2. VARIABLE AND MEMBER NAMING 109

7.2 Variable and member naming

It’s recommended that object variables identify it’s owner class.

// if just one duck used

var duck = new Duck();

or

var first_duck = new Duck();

var secondDuck = new Duck();

In the above example, I’ve used two naming conventions: one using an
underscore, and the other one using a capital letter. Each of them are clear
enough on the type of the variable.

Is better to reserve one letter variables for local loops. Simpler names are
best used with number variables.

var index = 1;

var len = length "123";

For string and arrays, I recommend the use of the str, respectively arr
prefix. When a function has only a few lines a code, you can skip this
prefixes.

var arrNames = ["Eduard", "Mike"];

var strName = "Eduard";

You should use any naming convention you like, but use it in your entire
project. Keep in mind that somebody will need to read your code at some
point.

Classes must not be named used common variable names like “n” or “arr”.
Class member must have clear representative names. Use full words for
member names.

class Person {

var Name = "";

var Address = "";

110 CHAPTER 7. CODING GUIDELINES

var BillingAdddress = "";

}

I like prefixing private and protected members with a “ ”, in order to help
Concept IDE code competition(will appear last in auto-complete lists), but
you shouldn’t consider this a rule.

7.3 Circular references

When a variable is referencing an object, that references another object
referencing the initial object you have a circular reference.

This is how a circular reference looks like:

var a = new A();

a.SomeArray["SomeKey"] = a;

Is better to avoid this, because it can generate a little overhead for the
Garbage Collector when clean it. This is to be avoided from logical
reasons, more than technical.

An object referencing itself is not really a circular reference, so this should
be ok:

var a = new A();

a.SomeObject = a;

7.4 Love your code

Remember that coding should be fun. When it isn’t fun, it means that you
either need a break, a new boss or a new job. Coding is not a business, is
an art, and art has no deadlines. Real artists are driven by pure passion
and desire to create, not by the highest bidder.

Your code will never be perfect, just good enough for production. Take a
few hours once in a while, and write code for your own projects or fun. If

7.4. LOVE YOUR CODE 111

you don’t like coding, you’ve chosen the wrong line of work.

112 CHAPTER 7. CODING GUIDELINES

Part III

Concept Framework

113

115

Concept Application Server comes with a rich, fully cross-platform and
OS-independent framework. It covers all the user-interface, I/O, including
database abstraction layer.

It has similar features with well-known frameworks like GTK+ or .NET,
for the programmer to get relatively fast used with it.

We will consider the framework as a set of two API’s: static API’s,
implemented in C, for best speed, and the actual framework objects,
implemented in Concept.

Except the UNIX sockets API’s, the frameworks should behave exactly the
same on Windows, Linux, BSD and Mac OS X. Mobile devices run a
stripped down version of the framework, bat the basic properties should
work exactly the same as on desktop computers.

We will discuss in the next chapters the principles behind the Concept
Framework rather than focusing on every single object, method, event or
property. For that you have the on-line help(and off-line) available.

You will notice that every UI class begins with “R”. This stands from
Remote, for example “RLabel” should be read ”Remote Label”. Every
class that has an impact on the client server has this “R” or “Remote”
prefix. These classes are of little to no use in http and console applications.
Classes that don’t affect the client have no prefix (for example “Xapian”).

116

Figure 7.1:
The UI class hierarchy (basic classes)

Chapter 8

Cloud UI application
architecture

8.1 Base objects

Every Concept remote UI object is a descendant of RemoteObject.
RemoteObject keeps a remote identifier, which can be accessed by the RID
property. All visible objects descend from VisibleRemoteObject, which
hold basic object properties like Visible, Enable, Tooltip, FgColor
(foreground color), BgColor, Font, DragIcon, Packing, MinWidth,
MinHeight, and the read-only properties Width and Height.

Let’s define a widget as an object that can’t have any children. Every
widget is usually a direct descendant of VisibleRemoteObject. Examples of
widgets are RLabel, REdit.

A container is an object that can have children. Every container must
inherit RemoteContainer, SingleContainer or DoubleContainer.
RemoteContainer can have any number of children. Examples of
RemoteContainer are RVBox and RTable which are classes used for
layouts. RemoteContainer adds the Childs property, an array containing
all its children.

Single containers are objects that can have only one child, accesible by
using the Child property. Most of UI visible objects are single containers,

117

118 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

for example: RForm, RButton, RFrame and RExpander. These are objects
that hold just one child (any kind), usually, but not limited to, a
RemoteContainer, for example RTable.

Double containers are used just by the RPaned, RVPaned and RHPaned, a
kind a control that allows the user to resize the area occupied by left or
top, right or bottom by using the mouse. DoubleContainer adds two
properties: Child1 and Child2. These controls are not available on mobile
devices.

Every UI application must instantiate the CApplication class(short for
Concept Application), defined in Application.con. This is how the minimal
concept:// application should look like:

minimalApplication.con

include Application.con

include RForm.con

class Main {

function Main() {

try {

var Application = new CApplication(new RForm(null));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo Exception;

}

}

}

The previous example simply creates an empty window. The null
parameter used in RForm’s constructor means that it has no parent.

CApplication’s Init() method prepares the client for the execution, Run()
starts executing the applications and lunches the message loop and the
Done() method cleans up and notifies the client that the application ended
correctly.

Note that this application doesn’t produce any result if ran from a concept
console. The correct way of running this application is to copy it in the

8.1. BASE OBJECTS 119

Concept Application Server root (refer to the first chapters), and run it by
using Concept Client using the address:

concept://localhost/minimalApplication.con

or, if you use CIDE (Concept IDE), and place the application into
MyProjects/minimalApplication/ folder:

concept://localhost/MyProjects/minimalApplication/minimalApplication.con

All remote UI objects take the owner object as the sole parameter for their
constructor. Also, all VisibleRemoteObject-derived UI objects are not
visible by default. You should call Show() or set the Visible property to
true.

UI objects have a variety of events, for example OnShow. All the events,
regarding object and event type have two parameters: Sender(object) and
EventData(string). If an event is needed, you can set the event handler
like this:

[...]

MyForm(Owner) {

super(Owner);

// set the form title

this.Caption = "Hello world!";

button1 = new RButton(this);

button1.OnShow = this.OnShow;

}

OnShow(Sender, EventData) {

CApplication.Message("Shown!");

}

[...]

Note that events set on an object without parent, except the main form,
will not work. You need first to call LinkIfNotLinked(obj) where object is
a reference to main form or any other UI object that has a parent. Objects
without parent are those created with null as a parent, for example new
RImage(null).

Avoid doing extensive processing in events, because it will halt the main

120 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

message loop, resulting in a delay of processing the other events.

Hiding the main form, causes the application execution to end.

An application must have at least one form. It can create any number of
additional forms, if needed, just be sure to create the child windows with
main form as the parent.

Some RForm members that you may use frequently:

Caption : string property
the title of the form

Resizable : boolean property (default is true)
allow the user to resize the form if true (on mobile clients has no
effect)

Modal : boolean property (default is false)
if set to true, the use will not be able to interact with any other form
except this (the modal form). It has no effect on mobile clients.

CSS : string property (inherited from VisibleRemoteObject)
set the CSS (Cascading Style Sheets) for the given form and/or its
children.
For example, a gradient background may be set for a form and its
child forms:

form.CSS = "RForm { background-color:

qlineargradient(x1:0, y1:0, x2:0, y2:1, stop:0 #f1f1f1

stop:1 #e4f0f5); }";

Maximized : boolean property (default is false)
if set to true, the form will be maximized. It has no effect on mobile
clients.

Minimized : boolean property (default is false)
if set to true, the form will be minimized. It has no effect on mobile
clients.

FullScreen : boolean property (default is false)
if set to true, the form will use the entire screen. It has no effect on
mobile clients.

8.1. BASE OBJECTS 121

Decorations : property (DECOR ALL, DECOR BORDER,
DECOR RESIZEH, DECOR TITLE, DECOR MENU,
DECOR MINIMIZE, DECOR MAXIMIZE)
sets the available decorations (buttons in title bar). It has no effect
on mobile clients.

SkipTaskbar : boolean property (default is false)
if set to true, will be hidden in your OS task bar. It has no effect on
mobile clients.

KeepAbove : boolean property (default is false)
if set to true, will be the window will appear on top of other
windows. It has no effect on mobile clients.

KeepBelow : boolean property (default is false)
if set to true, will be the window will appear on beneath other
windows. It has no effect on mobile clients.

Icon : RImage property
Sets an RImage that would be used as form’s icon. It has no effect
on mobile clients.

Position : property (WP NONE, WP CENTER, WP MOUSE,
WP CENTER ALWAYS, WP CENTER ON PARENT)
Sets the window default position. It has no effect on mobile clients.

Closeable : boolean property
if set to true, the user will be able to close the window.

Opacity : number property
Sets the opacity of the window, with 0.0 being fully
transparent(invisible) and 1.0 being completely opaque.

Screen : number property
Sets the screen/monitor index in which the window will be shown

Width : number property
Sets or gets the window width in pixels. It has no effect on mobile
clients.

Height : number property
Sets or gets the window height in pixels. It has no effect on mobile
clients.

122 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

Left : number property (inherited from VisibleRemoteObject)
Sets or gets the window X coordinate of the top left corner. It has no
effect on mobile clients.

Top : number property (inherited from VisibleRemoteObject)
Sets or gets the window Y coordinate of the top left corner. It has no
effect on mobile clients.

MouseCursor : number property (inherited from VisibleRemoteObject)
Sets or gets the mouse cursor (stock cursor). Some possible values
are: CURSOR CURSOR ARROW, CURSOR CLOCK,
CURSOR TOP RIGHT CORNER. See Concept Framework
documentation for VisibleRemoteObject for a list with all the
possible values (about 80 stock cursors). It has no effect on mobile
clients.

MouseCursorImage : RImage property (inherited from
VisibleRemoteObject)
Sets or gets the mouse cursor from the given RImage(an image of
any size). It has no effect on mobile clients.

Restore ()
Restores the minimized or maximized window

Maximize ()
Maximizes the window

Minimize ()
Minimizes the window

BacktroundImage (RImage img)
Sets img as the background image

Show () inherited from VisibleRemoteObject
Shows the window. It is equivalent to RForm.Visible = true.

Hide () inherited from VisibleRemoteObject
Hides the window. It is equivalent to RForm.Visible = false.

Here are most used events in applications (associated with all widgets, not
only RForms). All events must be handled by delegates with two
parameters: EventHandler(RemoteObject Sender, string EventData).

8.1. BASE OBJECTS 123

OnRealize inherited from VisibleRemoteObject
Called when the widget is created on the client

OnShow inherited from VisibleRemoteObject
Called when the widget is shown

OnHide inherited from VisibleRemoteObject
Called when the widget is hidden

OnFocus inherited from VisibleRemoteObject
Called when the widget receives focus

OnFocusOut inherited from VisibleRemoteObject
Called when the widget looses focus

OnExposeEvent inherited from VisibleRemoteObject
Called when the widget become visible on the screen

OnKeyPress inherited from VisibleRemoteObject
Called when the user presses a key. EventData contains the key code.

OnKeyRelease inherited from VisibleRemoteObject
Called when the user releases a key. EventData contains the key
code.

OnButtonPress inherited from VisibleRemoteObject
Called when the user presses a mouse button. EventData contains
the mouse button index.

OnButtonRelease inherited from VisibleRemoteObject
Called when the user releases a mouse button. EventData contains
the mouse button index.

OnDragBegin inherited from VisibleRemoteObject
Called when the user begins a drag and drop operation. Note that
the Dragable property must be set to true and DragData to a string
describing the drag operation (that will be sent to the drop site).

OnDragEnd inherited from VisibleRemoteObject
Called when the user finishes a drag and drop operation. Note that
the Dragable property must be set to true and DragData to a string
describing the drag operation (that will be sent to the drop site).

124 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

OnDragDataReceived inherited from VisibleRemoteObject
Called when the user is in the process of a dropping something on
the UI object. Note that the DropSite property must be set to
DROP STRINGS, DROP FILES or DROP ANY (default is
DROP NONE). EventData contains the object’s drag data. If
DropSite is DROP FILES you can get the dropped files via
GetDNDFile(strinf filename, var content, var error descripton = ””).
If you want to cancel the drag and drop operation, you may use
ResetDNDFiles().

public on_DragDataReceived(VisibleRemoteObject Sender, string

EventData) {

// file names are separated by "\r\n"

var arr = StrSplit(EventData,"\r\n");

var len = length arr;

for (var i=0;i<len;i++) {

// gets the full path of the filename

var filename = URIDecode(arr[i]);

if (!this.MediaView.GetDNDFile(filename, var content,

var errtext)) {

// filename is the client filename (including path)

// content contains the file content.

// TO DO: process the data

} else

echo "Error!";

}

}

OnDragDrop inherited from VisibleRemoteObject
Called when the user drops data on the UI object. Note that the
DropSite property must be set to DROP STRINGS, DROP FILES
or DROP ANY (default is DROP NONE). EventData contains the
path where the data was dropped for tree views, list views and icon
views, and x and y coordinates for any other object, in the form
“X:Y”.

Some objects don’t fire all the events, for example RLabel or RImage. If
it’s needed to handle a click or a key event for a static UI object (objects
without interaction from the user), an REventBox must be added as the
static object’s parent, and handle the needed on the event box.

Instead of directly adding the label to its parent:

8.2. RELATIVE LAYOUTS 125

var label = new RLabel(owner)

label.Show();

an intermediate event box should be added:

var eventbox = new REventBox(owner);

eventbox.Show();

var label = new RLabel(eventbox)

label.Show();

For the full list of events and properties, please check the Concept
Framework documentation.

8.2 Relative layouts

Concept Framework’s UI objects use almost exclusively relative layouts.
There is a RFixed surface, that allows you to use absolute positioning, but
I don’t recommend it (and is unsupported on mobile platforms).

Layouts are based on RVBox, RHBox, RTable, RVPaned, RVButtonBox
and RHButtonBox and RHPaned. RVBox is short from remote vertical
box and RHBox from horizontal box. Each UI object has a property called
Packing which has three possible values: PACK SHRINK,
PACK EXPAND PADDING and PACK EXPAND WIDGET. On mobile
platforms PACK EXPAND PADDING and PACK EXPAND WIDGET
produce the same effect. RVButtonBox and RHButtonBox are subclasses
of RBox, adding the Layout property (BUTTONBOX SPREAD,
BUTTONBOX EDGE, BUTTONBOX START, BUTTONBOX END)
controlling how the child widgets spread, the XPadding and YPadding
controlling the horizontal, respectively the vertical padding in pixels.

When using PACK SHRINK, the widget will use the minimum amount of
space (just enough to render its contents). PACK EXPAND PADDING
will render the object as PACK SHRINK, but will use all the available
space as padding (not actually using the space, but rather “reserving” it).
PACK EXPAND WIDGET will enlarge the UI object to use the entire

126 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

Figure 8.1:
Packing with vertical boxes

available space in its parent.

This packing system is identical with GTK+ packing (the framework on
which the initial Concept Client was built). Even though not all Concept
Clients are GTK+ based (like the Android or iOS versions), the behavior
was implementing, because the flexible and screen resolution independent
nature.

Boxes allow you to set the spacing between the children using the Spacing
property (in points, as a number). Also, when the Homogeneous property
is set to true, all of the boxes children use the same amount of space.

The tables are more flexible structures that allows you to create complex
layouts. Each table has cells, and each child object can spawn over one or
more cells, either vertically or horizontally. This can be controlled by
calling the AttachOptions function before adding a new child. Not that a
cell cannot contain more than one child (you cannot have overlapping
objects in a table).

RTable.AttachOptions(left_cell, right_cell, top_cell, bottom_cell,

horizontal_options=FILL_EXPAND, vertical_options=FILL_EXPAND,

horizontal_spacing=0, vertical_spacing=0)

8.2. RELATIVE LAYOUTS 127

The vertical and horizontal options takes one of the following constants as
a parameters:

EXPAND
expands the child object

SHRINK
shrinks the child object to its minimum size

FILL
fills the available space (used as a mask for EXPAND and SHRINK)

FILL EXPAND
alias for EXPAND | FILL

The cell spacing can be controlled using the RowSpacing and ColSpacing
properties. There is also a Homogeneous property that makes cells equal
when set to true.

By using boxes and tables you can create any kind of layouts, without
being pixel-dependent.

Figure 8.2:
Table layout

128 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

Every Concept UI application must have at leas one form. We will extend
the basic RForm and will create a new form illustrating the relative layout
behavior.

boxes.con

include Application.con

include RForm.con

include RHBox.con

include RVBox.con

include RLabel.con

class MyForm extends RForm {

MyForm(Owner) {

// call RForm’s constructor

super(Owner);

var vbox=new RVBox(this);

vbox.Show();

var hbox=new RHBox(vbox);

hbox.Packing=PACK_SHRINK;

hbox.Show();

for (var i=1;i<=5;i++) {

var tmp_label = new RLabel(hbox);

tmp_label.Caption = "Label $i ";

tmp_label.Packing = PACK_SHRINK;

tmp_label.Show();

}

var label1 = new RLabel(vbox);

label1.Packing = PACK_EXPAND_WIDGET;

label1.Caption = "This will use all the vertical space";

label1.Show();

}

}

class Main {

Main() {

try {

var Application = new CApplication(new MyForm(null));

Application.Init();

Application.Run();

Application.Done();

8.2. RELATIVE LAYOUTS 129

} catch (var Exception) {

echo Exception;

}

}

}

The output looks like figure 8.3. You can combine vertical boxes,
horizontal boxes and tables anyway you please.

You will notice that relative layouts are very responsive to window
size/resize.

Figure 8.3:
boxes.con output

A similar application can be created using RTable instead of RVBox and
RHBox. I personally like tables because of the tidy look given to the form.

tables.con

include Application.con

include RForm.con

include RTable.con

include RLabel.con

include REdit.con

include RTextView.con

class MyForm extends RForm {

MyForm(Owner) {

super(Owner);

130 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

var table = new RTable(this);

table.Rows = 3;

table.Columns = 2;

table.Show();

// left, right, top, bottom,

// shrink horizontally, shrink vertically

table.AttachOptions(0, 1, 0, 1, SHRINK, SHRINK);

var labelName = new RLabel(table);

labelName.Caption = "Your name";

labelName.Show();

// expand horizontally filling the empty

// space, shrink vertically

table.AttachOptions(1, 2, 0, 1, EXPAND | FILL, SHRINK);

var editName = new REdit(table);

editName.Show();

table.AttachOptions(0, 2, 1, 2, SHRINK, SHRINK);

var labelAddress = new RLabel(table);

labelAddress.Caption = "Address";

labelAddress.Show();

// expand horizontally, expand vertically

table.AttachOptions(0, 2, 2, 3, EXPAND | FILL, EXPAND |

FILL);

var viewAddress = new RTextView(table);

viewAddress.Show();

}

}

class Main {

Main() {

try {

var Application = new CApplication(new MyForm(null));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo Exception;

}

}

}

8.2. RELATIVE LAYOUTS 131

The output looks like figure 8.4. By combining tables with boxes you can
easily get any layout you need, remaining pixel-independent.

Figure 8.4:
tables.con output

Note that you can use RScrolledWindow to add scrolling capability to your
objects.

For example:

[..]

var scrollWindow = new RScrolledWindow(this);

scrollWindow.Show();

var table = new RTable(scrollWindow);

table.Show()

[..]

,

This will make your table scrollable by the user, if its content don’t fit in
the given area. RScrolledWindow uses HScrollPolicy and VScrollPolicy to
control when the scroll bars will be shown(POLICY ALWAYS(default),
POLICY AUTOMATIC(preferred), POLICY NEVER).

132 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

8.3 MDI with notebooks

When dealing with multiple documents, it’s cleaner and easier to keep the
user’s attention if you use a RNotebook instead of multiple windows.

Concept notebooks(known also as tab-bars) provide an easily customizable
interface. It behaves like a box showing just one child at a time. A child is
rendered on a notebook page, and each page has a caption that can be a
text, image(supported on all platforms), or any other kind of object, a
button for example this being supported only on desktop computers. You
can set/get the current page index by using the PageIndex property. On
desktop computer you can control the tabs visibility by setting
ShowTabs(true or false) and the position by setting TabPos to POS LEFT,
POS RIGHT, POS TOP(default) or POS BOTTOM.

Note that on Android tabs are show only at the top and on iOS only at
the bottom of the display and cannot be hidden.

Each notebook page can contain only one UI object(for example a RVBox
or RTable). There is no limit on the number of pages, though on iOS
recommends a maximum of 5 tabs(when more than 5, a more button
appears with the other pages). RNotebook implements the
OnSwitchPage(RNotebook Sender, string EventData) event which notifies
you when a user changed a page. It is not mandatory to catch this event.
In the EventData parameter the new page index is received, in order to
avoid calling PageIndex and generate a delay by a new exchange of
messages on the network.

The notebooks captions can be set via de Pages property (array of objects).
For example, after adding the first object to a RNotebook, we can call
notebook.Pages[0].Caption=”First page” or notebook.Pages[0].Header=new
RImage(null) if we want to use an image instead of an actual text.

notebook.con

include Application.con

include RNotebook.con

include RLabel.con

class MyForm extends RForm {

MyForm(Owner) {

8.3. MDI WITH NOTEBOOKS 133

super(Owner);

var notebook = new RNotebook(this);

notebook.Show();

var label1 = new RLabel(notebook);

label1.Caption = "Hello world from a notebook\nNow skip to

the next page.";

label1.Show();

notebook.Pages[0].Caption = "First page";

var label2 = new RLabel(notebook);

label2.Caption = "Hello again!";

label2.Show();

notebook.Pages[1].Caption = "Second page";

var label3 = new RLabel(notebook);

label3.Caption = "Please go to the first page";

label3.Show();

notebook.Pages[2].Caption = "Third page";

// we could show the 3rd page (first page has index 0)

// notebook.PageIndex = 2;

}

}

class Main {

Main() {

try {

var Application = new CApplication(new MyForm(null));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo Exception;

}

}

}

The output looks like figure 8.5. You can use any form of layout like
RTable or RVBox instead of the RLabel(used in the previous example).

134 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

Figure 8.5:
notebook.con output

8.4 Text fields

Concept Frameworks defines three types of text fields:

RLabel
static text, not editable by the user

REdit
Signle-line edit box

RTextView
Multiple rich text edit box

Each of these can use custom fonts by using Font property(see RFont class
reference in Concept Documentation).

RLabel uses two alignment properties: XAlign(supported also by REdit)
and YAlign. These properties control how the text is aligned inside the
control. They must have a real value between 0.0 and 1.0. For XAlign, 0.0
means left-aligned, 0.5 center and 1.0 right aligned. Similar, for YAlign,
0.0 means at aligned at top, 0.5 vertical center, and 1.0 at the bottom.

8.4. TEXT FIELDS 135

For RLabel you can set the Caption property and for REdit and
RTextView, the Text property sets or gets the text.

REdit and RTextView can be used as static text if you set by setting the
ReadOnly property to true.

RLabel supports some HTML tags like (bold), <i>(italic),
and . On mobile devices you can use any HTML tags you need,
but on desktop, you are limited to Pango markup language. If you want to
use tags, you need to set the UseMarkup property to true first.

REdit supports password mode by setting the Masked property to true.
When in password mode, the user will see *(masked char) instead of the
typed characters.

All of these controls must receive UTF-8 strings. UTF-8 is the only format
used by the Concept Framework (UI). If you need to output text from
other formats, use the iconv2 function (see Concept Framework help) to
convert it to UTF-8.

When using RTextView you can define multiple styles of text, by using the
CreateStyle(string stylename) function. This allows you to create
RTextTag objects with which you can manipulate specific parts of the text.
Then you can add custom text by using AddStyledText(string text,
RTextTag style). You can also add objects like buttons or images using the
AddObject(object) method. The Wrap property can be set to
WRAP NONE(default), WRAP CHAR, WRAP WORD,
WRAP WORD CHAR to control how the text is wrapped.

textfields.con

1 include Application.con

2 include RTable.con

3 include RLabel.con

4 include REdit.con

5 include RTextView.con

6 include RScrolledWindow.con

7

8 class MyForm extends RForm {

9 MyForm(Owner) {

10 super(Owner);

11 var table = new RTable(this);

12 table.Rows = 3;

136 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

13 table.Columns = 2;

14 table.Show();

15

16 // left, right, top, bottom,

17 // shrink horizontally, shrink vertically

18 table.AttachOptions(0, 1, 0, 1, SHRINK, SHRINK);

19 var labelName = new RLabel(table);

20 labelName.UseMarkup = true;

21 labelName.Caption = "Your name";

22 // align left

23 labelName.XAlign = 0.0;

24 // align top

25 labelName.YAlign = 0.0;

26 labelName.Show();

27

28 // expand horizontally filling the empty

29 // space, shrink vertically

30 table.AttachOptions(1, 2, 0, 1, EXPAND | FILL, SHRINK);

31 var editName = new REdit(table);

32 editName.Text = "Eduard";

33 editName.Show();

34

35 table.AttachOptions(0, 2, 1, 2, EXPAND | FILL, SHRINK);

36 var labelAddress = new RLabel(table);

37 labelAddress.Caption = "Address";

38 labelAddress.Font.Name = "bold";

39 // set label color to dark blue (0x R G B in hexadecimal)

40 labelAddress.FgColor = 0x000080;

41 labelAddress.XAlign = 0.0;

42 labelAddress.YAlign = 0.0;

43 labelAddress.Show();

44

45 // expand horizontally, expand vertically

46 table.AttachOptions(0, 2, 2, 3, EXPAND | FILL, EXPAND |

FILL);

47 // add scrollbars to textview

48 var scrollAddress = new RScrolledWindow(table);

49 scrollAddress.HScrollPolicy = POLICY_AUTOMATIC;

50 scrollAddress.Show();

51

52 var viewAddress = new RTextView(scrollAddress);

53 viewAddress.Text = "The user can just type the text

here\n\n";

54 viewAddress.Wrap = WRAP_WORD;

55 viewAddress.Show();

8.4. TEXT FIELDS 137

56

57 var style=viewAddress.CreateStyle("My Style 1");

58 style.FontName = "Arial 16";

59 style.ForeColor = 0xFF0000;

60 viewAddress.AddStyledText("Replace me with your address",

style);

61 }

62 }

63

64 class Main {

65 Main() {

66 try {

67 var Application = new CApplication(new MyForm(null));

68 Application.Init();

69 Application.Run();

70 Application.Done();

71 } catch (var Exception) {

72 echo Exception;

73 }

74 }

75 }

Figure 8.6 shows the output.

Figure 8.6:
textfields.con output

138 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

For REdit you have the Suggest string property that allows the user to
select a preset value from a given set, while typing. The suggested
elements must be separated by “;”, for example: editName.Suggest =
“Ana;Claudia;John;Maria”. Alternatively you can use the
SuggestModel(object, text column index) function to populate the
suggestion list from an existing tree view, icon view, combo box or editable
combo box.

For each REdit you can set two icons, primary(at edit field’s start) and
secondary(at edit field’s end) via string property PrimaryIconName(stock
icon name) or PrimaryIcon (RImage), respectively SecondaryIconName
and SecondaryIcon. If PrimaryIconActivable and/or
SecondaryIconActivable is set to true, you can handle the OnIconPress or
OnIconRelease events to be notified when an user clicked on the icons. The
EventData parameter will be “0” for the primary icon or “1”(as string) for
the seconday icon. For example, you can set edit.SecondaryIconName =
“gtk-find” for showing the search icon at the end of the field.

8.5 Buttons

You can use multiple type of buttons, starting with push
buttons(RButton), check buttons(RCheckButton), radio
buttons(RRadioButton) and multiple type of tool buttons.

RButton is a single container that can hold text, images or both. When
clicked it fires the OnClicked event, if handled. Being a single container,
allows you to add anything you like inside the button. Usually just text
and images, but you could add a RLabel in order to use markup text.

RCheckButton is a toggle button(VisibleRemoteObject) that can be
checked, unchecked or in a inconsistent mode (nor checked nor unchecked).
You can access the state of the button by using the Checked property (true
or false) or set it to an inconsistent mode by setting the Inconsistent
property to true.

RRadioButton is also a toggle button, similar with RCheckButton but
grouped with GroupWith property. When a radio button in a group is
checked, the previous checked button is automatically unchecked. In a
group, just one radio button can be checked at a time. Note that on

8.5. BUTTONS 139

mobile platforms the GroupWith property may be ignored on some
platforms. Instead, the radio buttons will be automatically grouped by
having the same parent. However, you should always set the GroupWith
property, regardless of the target platform.

For all button type, you can set the displayed text by setting the Caption
property(string).

buttons.con

include Application.con

include RVBox.con

include RButton.con

include RCheckButton.con

include RRadioButton.con

include StockConstants.con

class MyForm extends RForm {

protected var radio1;

protected var radio2;

protected var radio3;

protected var check;

MyForm(Owner) {

super(Owner);

var box = new RVBox(this);

box.Show();

radio1 = new RRadioButton(box);

radio1.Caption = "First option";

radio1.Show();

radio2 = new RRadioButton(box);

radio2.Caption = "Second option";

// group with radio 1

// note that we don’t need to set the GroupWith property

// for button1

radio2.GroupWith = radio1;

radio2.Show();

radio3 = new RRadioButton(box);

radio3.Caption = "Third option";

// group it with button1. We could also set it to radio2

// because is in the same group with button1.

140 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

radio3.GroupWith = radio1;

radio3.Show();

// check the first button

radio1.Checked = true;

// check is a member variable

check = new RCheckButton(box);

check.Caption = "Check me!";

check.Show();

var button = new RButton(box);

button.Caption = "Click me";

button.LoadStockIcon(PRINT_PREVIEW);

button.OnClicked = this.ButtonClicked;

button.Show();

}

ButtonClicked(Sender, EventData) {

var result="";

if (check.Checked)

result+="check button is checked";

else

result+="check button is unchecked";

if (radio1.Checked)

result+=", radio1 is checked";

else

if (radio2.Checked)

result+=", radio2 is checked";

else

result+=", radio3 is checked";

// CApplication.Message uses markup text

if (CApplication.Message("Hello! You should know that

$result. Do you want to exit?", "Hello title",

MESSAGE_INFO, BUTTONS_YES_NO) == RESPONSE_YES) {

// hiding main form causes the application to end

this.Hide();

}

}

}

class Main {

Main() {

try {

8.6. IMAGES 141

var Application = new CApplication(new MyForm(null));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo Exception;

}

}

}

Figure 8.7 shows the output.

Figure 8.7:
buttons.con output

8.6 Images

Images are managed by the RImage class. An RImage cannot have any
children (being a direct VisibleRemoteObject descendant). An image
object can use either a given image file or a stock image. Stock images are
embedded in concept client (all platforms), that allows you to minimize
the network traffic, and provide consistent look for Concept applications
(for example, the “gtk-save” icon image will look as the native “Save as”
icon on the given platform).

The stock images are prefixed by “gtk-”. The initial stock images were
based on GTK+, but the list was extended to include more, and the “gtk-”
prefix was maintained for consistency. The list of stock images contains:

142 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

gtk-about gtk-add gtk-apply gtk-bold gtk-cancel

gtk-cdrom gtk-clear gtk-close gtk-copy gtk-cut

gtk-delete gtk-dialog-authentication gtk-dialog-error gtk-dialog-info gtk-dialog-question

gtk-dialog-warning gtk-edit gtk-execute gtk-file gtk-find-and-replace

gtk-find gtk-floppy gtk-fullscreen gtk-go-back gtk-go-down

gtk-go-forward gtk-go-up gtk-goto-bottom gtk-goto-first gtk-goto-last

gtk-goto-top gtk-harddisk gtk-home gtk-indent gtk-info

gtk-italic gtk-jump-to gtk-justify-center gtk-justify-fill gtk-justify-left

gtk-justify-right gtk-leave-fullscreen gtk-media-next gtk-media-pause gtk-media-play

gtk-media-previous gtk-media-record gtk-media-stop gtk-missing-image gtk-new

gtk-no gtk-ok gtk-open gtk-paste gtk-preferences

gtk-print-preview gtk-print gtk-properties gtk-quit gtk-redo

gtk-refresh gtk-remove gtk-revert-to-saved gtk-save-as gtk-save

gtk-select-all gtk-sort-ascending gtk-sort-descending gtk-spell-check gtk-stop

gtk-strikethrough gtk-underline gtk-undo gtk-unindent gtk-yes

8.6. IMAGES 143

You can load an image, either by setting the Filename property, either by
using the LoadResource(string stock constant, number size) method, where
size is 0, 1, 2, 3, 4 (0 meaning smallest icon, and 4 biggest).

images.con

include Application.con

include RVBox.con

include RImage.con

class MyForm extends RForm {

MyForm(Owner) {

super(Owner);

var box = new RVBox(this);

box.Show();

var image = new RImage(box);

// the same directory with the application

image.Filename = "conceptclienticon.png";

image.Show();

var imageStock = new RImage(box);

imageStock.LoadResource("gtk-print", 3);

imageStock.Show();

}

}

class Main {

Main() {

try {

var Application = new CApplication(new MyForm(null));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo Exception;

}

}

}

Figure 8.8 shows the output.

On desktop computers you can use modifier functions like Scale(width,
height), Rotate90(angle) or Flip(horizontal=false) on the image object.

144 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

Figure 8.8:
images.con output

8.7 Menus and tool bars

In most applications you need methods of providing a menu to the user.
This can be achieved using menu bars, pop-up menus or tool bars. All of
these follow the same pattern.

Menu bars and pop-ups use the following UI objects:

RMenuBar
the menu bar as seen by the user. Can contain menu items and
menus

RMenuItem
the standard menu item(as text)

RImageMenuItem inherits RMenuItem
a menu item with an attached image

RCheckMenuItem inherits RMenuItem
a menu item with behavior similar with a check button

RRadioMenuItem inherits RMenuItem
a menu item with behavior similar with a radio button

RTearoffMenuItem inherits RMenuItem
a menu item that can be detached from its parent by the user

RSeparatorMenuItem

8.7. MENUS AND TOOL BARS 145

a separator bar (with no interaction from the user)

An RMenu can be associated with the PopupMenu property available in
all VisibleRemoteObject descendant objects. This will show the menu
when the user right clicks on the given object. Same RMenu can be linked
with multiple objects.

Note that static objects like RImage or RLabel don’t catch the mouse
events. If you want to attach a pop-up menu to one of these, you must put
them in an REventBox object, and set the PopupMenu property of that
event box. This is also useful when you want to detect mouse clicks in an
image, handling the click by OnButtonPress or OnButtonRelease.

You can also add any type of object to a menu (for example an REdit) by
using the ContainedObject property. This will allow you to replace a menu
item with anything you like. For example menuitem.ContainedObject =
new REdit(null).

Menu items can have associated shortcut keys by setting the AccelKey
string property. For example, if you want a menu item to be activated
when the user presses Ctrl+s (Save), you could set AccelKey to
“<control>s”. Alternatively you can use the underscore(“ ”) to prefix the
menu shortcut key, for example menuitem.Caption=“ File”. In this case,
Alt+F/Cmd+F will activate the menu.

RMenuItem fires the OnActivate event(if handled) when an user selects it
by touching it or clicking it.

Alternatively you can use tool bars, using the same concept:

RToolbar
the tool bar as seen by the user. Can contain RToolButton
descendant objects

RToolButton
the tool bar button (can contain text and/or image)

RToggleToolButton inherits RToolButton
a toggle button (similar with a check button)

RRadioToolButton inherits RToggleToolButton
a radio tool button

146 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

RToolSeparator
a separator b ar (with no interaction from the user)

Although they look and behave different, the logic behind them is nearly
identical. In practice, you will create these objects visually by using
Concept IDE’s design view. To better understand how it works, we will
create these objects from code.

Both menu bars and tool bars have limited support on mobile devices, due
to lack of mouse and right click. Both on iOS and Android you could have
just on menu bar per window, and tool buttons behave like typical
buttons.

RToolButton fires the OnClicked event(if handled) when an user selects it
by touching it or clicking it.

menus.con

include Application.con

include RVBox.con

include RImage.con

include RMenuBar.con

include REventBox.con

class MyForm extends RForm {

MyForm(Owner) {

super(Owner);

var box = new RVBox(this);

box.Show();

var menubar = new RMenuBar(box);

menubar.Show();

var menuitem = new RMenuItem(menubar, "_File");

menuitem.Show();

// a menu to hold its children

var menu = new RMenu(menuitem);

menu.Show();

// owner, caption, is_stock (default is false)

var menuitem_new=new RImageMenuItem(menu, "gtk-new", true);

menuitem_new.AccelKey="<control>n";

// handle on activate (the user clicked the menu item)

menuitem_new.OnActivate = this.NewActivate;

8.7. MENUS AND TOOL BARS 147

menuitem_new.Show();

var menuitem_save = new RImageMenuItem(menu, "Save");

menuitem_save.AccelKey = "F2";

menuitem_save.Show();

var menuimage = new RImage(null);

menuimage.Filename = "conceptclienticon.png";

// scale image to 24x24

menuimage.Scale(24, 24);

// note that menuimage must not belong to another object!

menuitem_save.SetImage(menuimage);

var submenu = new RMenu(menuitem_save);

submenu.Show();

var radioMenu1=new RRadioMenuItem(submenu, "First file");

radioMenu1.Checked = true;

radioMenu1.Show();

var radioMenu2=new RRadioMenuItem(submenu, "Second file");

radioMenu2.GroupWith = radioMenu1;

radioMenu2.Checked = false;

radioMenu2.Show();

var checkMenu=new RCheckMenuItem(submenu, "Check me out");

checkMenu.Show();

var menuitemEdit = new RImageMenuItem(menubar, "gtk-edit",

true);

menuitemEdit.Show();

// use the menu also as a popup menu for image

// we add an event box first, to capture the event

// RImage and RLabel are static data, with no associated

// window. When we want to catch a mouse event for these

// objects, we need to put them in an REventBox.

var eventbox = new REventBox(box);

eventbox.PopupMenu = menu;

eventbox.Show();

var image = new RImage(eventbox);

image.LoadResource("gtk-print", 3);

image.Show();

148 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

}

NewActivate(Sender, EventData) {

CApplication.Message("New!");

}

}

class Main {

Main() {

try {

var Application = new CApplication(new MyForm(null));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo Exception;

}

}

}

Don’t be alarm by the line count. This code will be automatically
generated for you by Concept IDE’s design view.

Figure 8.9 shows the output.

Figure 8.9:
menus.con output

For tool bars you can control the orientation by setting the Orientation

8.7. MENUS AND TOOL BARS 149

property to ORIENTATION HORIZONTAL(default) or
ORIENTATION VERTICAL. You can also control the tool bar style via
the Style property and the following values:

TOOLBAR ICONS
show only button icons

TOOLBAR TEXT
show only button text

TOOLBAR BOTH
show icon above and text below

TOOLBAR BOTH HORIZ
show icon at left and text at right

Now let’s see the same principle applied to tool bars.

toolbars.con

include Application.con

include RVBox.con

include RImage.con

include RToolbar.con

include RToolButton.con

include RMenuToolButton.con

include RToolSeparator.con

include RMenu.con

class MyForm extends RForm {

MyForm(Owner) {

super(Owner);

var box = new RVBox(this);

box.Show();

var toolbar = new RToolbar(box);

toolbar.Show();

var button1 = new RToolButton(toolbar);

button1.Caption = "New";

button1.StockID = "gtk-new";

button1.Show();

button1.OnClicked = this.OnButton1Clicked;

150 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

var beeimage = new RImage(null);

beeimage.Filename = "conceptclienticon.png";

// scale image to 32x32

beeimage.Scale(32, 32);

beeimage.Show();

var button2 = new RToolButton(toolbar);

button2.Caption = "Bee";

button2.Icon = beeimage;

button2.Show();

var separator = new RToolSeparator(toolbar);

separator.Show();

var menubutton = new RMenuToolButton(toolbar);

menubutton.Caption = "Play";

menubutton.StockID = "gtk-media-play";

menubutton.Show();

var menu = new RMenu(menubutton);

menu.Show();

var menuitem = new RMenuItem(menu, "Play a song");

menuitem.Show();

menubutton.Menu = menu;

var image = new RImage(box);

image.LoadResource("gtk-print", 3);

image.Show();

}

OnButton1Clicked(Sender, EventData) {

CApplication.Message("New!");

}

}

class Main {

Main() {

try {

var Application = new CApplication(new MyForm(null));

Application.Init();

Application.Run();

Application.Done();

8.8. TREE VIEWS, LIST VIEWS AND COMBO BOXES 151

} catch (var Exception) {

echo Exception;

}

}

}

Figure 8.10 shows the output.

Figure 8.10:
toolbars.con output

8.8 Tree views, list views and combo boxes

Concept uses 4 types of element-based views:

RTreeView
a flexible object (VisibleRemoteObject) that allows you to display
images, text, markup, progress bars, check and radio buttons in a
multiple-column list or tree structure, with support for cell editing
and event handling

RIconView
an object similar with RTreeView, in behavior, but displays only one
icon and one text column.

RComboBox inherits RToolButton

152 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

a combo box, with one ore more columns (supporting all of the
RTreeView ’s column types)

REditComboBox a mixed object that has similar behavior both with
RComboBox and REdit.

For each of these, the valid column types are:

HIDDEN COLUMN
an invisible column

NORMAL COLUMN
renders cells as text

PERCENT COLUMN
renders cells as progress bars

CHECK COLUMN
renders cells as check buttons

RADIO COLUMN
renders cells as radio buttons

IMAGE COLUMN
renders cells as images

COMBO COLUMN
renders cells as combo boxes

MARKUP COLUMN
renders cells as markup text (not usable for RIconView -
alternatively you can use RIconView.MarkupColumn = column
index)

EDITABLE COLUMN
flag to be used with other column type, making the cell editable

EDITABLE COLUMN must be combined with other column types, for
example NORMAL COLUMN | EDITABLE COLUMN.

For RTreeView only, is mandatory to set the data model by using the
Model property. Acceptable values are MODEL LISTVIEW and

8.8. TREE VIEWS, LIST VIEWS AND COMBO BOXES 153

MODEL TREEVIEW. You cannot change the model once columns are
defined, just be sure to set the Model property before you do anything else
with the view. When in tree view mode, you can add children to an item
via AddChild or InsertChild members. This cannot be done for list views.
Note that MODEL TREEVIEW is to be avoided when writing
applications for mobile platforms, due to its limited support.

RTreeView fires the OnRowActivated event, if handled, when user selects
an item. The EventData string contains the selected row index or path
(for tree views) in order to avoid additional network traffic by reading
RowIndex property (which holds the same value). You can set
MultipleSelection to true if you want to allow the user to select multiple
rows. You can get or set the selected item by using the RowIndex
property. If MultipleSelect is true, you can use the Selected property
(read-only), and you will get an array containing the selected indexes.
Note that indexes are returned as number for MODEL LISTVIEW and as
string for MODEL TREEVIEW. The Items property allows you to access
the elements in a tree view, icon view and combo box.

Items for tree views, icon views and combo boxes must be arrays with
element count at least equal with the number of columns in the view. If
more items are sent, than the number of columns, the elements after
column count will be ignored.

You can manage the items by using the following functions:

AddItem (array item)
Applies to RTreeView, RIconView, RComboBox, REditComboBox

InsertItem (position, array item)
Applies to RTreeView, RIconView, RComboBox, REditComboBox

DeleteItem (position)
Applies to RTreeView, RIconView, RComboBox, REditComboBox

UpdateItem (position, array new item)
Applies to RTreeView, RIconView, RComboBox, REditComboBox

AddChild (path after, array item)
Applies to RTreeView when model is MODEL TREEVIEW

InsertChild (path after, number index, array item)

154 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

Applies only to RTreeView when model is MODEL TREEVIEW

Clear ()
Clears all the items. Applies to RTreeView, RIconView,
RComboBox, REditComboBox

ClearColumns ()
Removes all the columns. Applies to RTreeView and RIconView.

ClearItemColumns ()
Removes all the columns. Applies to RComboBox and
REditComboBox

The position parameter can be a string, a number or an array(only for
RTreeViews/MODEL TREEVIEW). For list views is the index, for tree
views can be either the index, or a string representing the path, for
example “0:1:1:3” meaning Item 0, Child 1, Sub-child 1, sub-sub-child 3.
You may use the array version instead of a string: [0, 1, 1, 3] being exactly
the same as “0:1:1:3”. If no item is selected, RowIndex will be -1.

RTreeView allows you to set SearchColumn property to, enabling the user
to search elements in the view by simply typing on the keyboard

listviews.con

include Application.con

include RForm.con

include RTreeView.con

include RScrolledWindow.con

include RImage.con

class MyForm extends RForm {

MyForm(Owner) {

super(Owner);

var scroll = new RScrolledWindow(this);

scroll.VScrollPolicy = scroll.HScrollPolicy =

POLICY_AUTOMATIC;

scroll.Show();

var treeview = new RTreeView(scroll);

treeview.Model = MODEL_LISTVIEW;

treeview.AddColumn("Icon", IMAGE_COLUMN);

treeview.AddColumn("Progress", PERCENT_COLUMN);

8.8. TREE VIEWS, LIST VIEWS AND COMBO BOXES 155

treeview.AddColumn("Caption", NORMAL_COLUMN);

treeview.AddColumn("Description", MARKUP_COLUMN);

treeview.AddColumn("Radio", RADIO_COLUMN);

treeview.AddColumn("Check", CHECK_COLUMN);

// handle row activated event

treeview.OnRowActivated = this.RowActivated;

treeview.Show();

var image1 = new RImage(null);

// load resource - small size (1)

image1.LoadResource("gtk-about", 1);

var image2 = new RImage(null);

image2.LoadResource("gtk-print", 1);

for (var i=0;i<10;i++) {

if (i%2)

treeview.AddItem([image1, i/9*100, "Item ${i+1}",

"Some kind of description", true, false]);

else

treeview.AddItem([image2, i/9*100, "Item ${i+1}",

"Some <i>other kind</i>

of description", false, true]);

}

// select the third element

treeview.RowIndex=2;

}

// in Sender we have treeview

RowActivated(Sender, EventData) {

// get the selected item

var item=Sender.Items[EventData];

if (item) {

item[3] = "Clicked";

// inver the check buttons

item[4] = !item[4];

item[5] = !item[5];

if (item[1] < 100) {

item[1]++;

// update the item on the client

Sender.UpdateItem(EventData, item);

} else

Sender.DeleteItem(EventData);

156 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

}

}

}

class Main {

function Main() {

try {

var Application=new CApplication(new MyForm(null));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo Exception;

}

}

}

Figure 8.11 shows the output.

Figure 8.11:
listviews.con output

Note that on mobile platforms, the actual number of columns may be
limited to one image, one progress bar, two text columns, and have
different layout setup than desktop versions.

8.8. TREE VIEWS, LIST VIEWS AND COMBO BOXES 157

RIconView fires the OnItemActivated event, if handled, when user selects
an item. The EventData string contains the selected item index in order to
avoid additional network traffic by reading RowIndex property (which
holds the same value). RIconView has the Path string property that has
the same value with RowIndex (number). I suggest you use RowIndex for
consistency (RTreeView, RIconView, RComboBox and REditComboBox
implement RowIndex).

For RIconView you must set the ImageColumn property(column index)
and the TextColumn or MarkupColumn. Note that you cannot add
MARKUP COLUMN flag or EDITABLE COLUMN to an RIconView.

The previous list view example can be rewritten to use the RIconView.

iconviews.con

include Application.con

include RForm.con

include RIconView.con

include RScrolledWindow.con

include RImage.con

class MyForm extends RForm {

MyForm(Owner) {

super(Owner);

var scroll = new RScrolledWindow(this);

scroll.VScrollPolicy = scroll.HScrollPolicy =

POLICY_AUTOMATIC;

scroll.Show();

var iconview = new RIconView(scroll);

iconview.AddColumn("Icon", IMAGE_COLUMN);

iconview.AddColumn("Description");

iconview.ImageColumn = 0;

iconview.MarkupColumn = 1;

iconview.OnItemActivated = this.ItemActivated;

iconview.Show();

var image1 = new RImage(null);

image1.LoadResource("gtk-about", 1);

var image2 = new RImage(null);

image2.LoadResource("gtk-print", 1);

158 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

for (var i=0;i<10;i++) {

if (i%2)

iconview.AddItem([image1, "Item ${i+1}"]);

else

iconview.AddItem([image2, "Item ${i+1}"]);

}

}

ItemActivated(Sender, EventData) {

// Sender is the icon view

var item=Sender.Items[EventData];

if (item) {

item[1]="Clicked!";

Sender.UpdateItem(EventData, item);

}

}

}

class Main {

function Main() {

try {

var Application=new CApplication(new MyForm(null));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo Exception;

}

}

}

Figure 8.12 shows the output.

Combo boxes use a similar programming models as list views and icon
views, the only difference is that they display only the selected item. Also,
item columns are nameless and are added with
AddColumns(column number, column type = NORMAL COLUMN).

REditComboBox inherits RComboBox and has most of the REdit
properties. The link between REdit and RComboBox is made via the
REditComboBox.TextColumn property. Note that that the text column is
better to be added with the HIDDEN COLUMN flag, because it will be

8.8. TREE VIEWS, LIST VIEWS AND COMBO BOXES 159

Figure 8.12:
iconviews.con output

shown twice, once as combo column and twice as text column.

comboboxes.con

include Application.con

include RForm.con

include RComboBox.con

include REditComboBox.con

include RImage.con

include RVBox.con

class MyForm extends RForm {

MyForm(Owner) {

super(Owner);

var box = new RVBox(this);

box.Show();

var combobox = new RComboBox(box);

// add one image column

combobox.AddColumns(1, IMAGE_COLUMN);

combobox.AddColumns(1, PERCENT_COLUMN);

// default for AddColumn and AddColumns is TEXT_COLUMN

combobox.AddColumns(1, MARKUP_COLUMN);

combobox.OnChanged = this.ComboChanged;

combobox.Show();

var image1 = new RImage(null);

// load resource - small size (1)

image1.LoadResource("gtk-about", 1);

160 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

var image2 = new RImage(null);

image2.LoadResource("gtk-print", 1);

var image3 = new RImage(null);

image3.LoadResource("gtk-zoom-in", 1);

combobox.AddItem([image1, 20, "Some kind of

description"]);

combobox.AddItem([image2, 85, "Some <i><span

color=’red’>other kind</i> of description"]);

combobox.AddItem([image3, 100, "Some other <i><span

color=’red’>other kind</i> of description"]);

combobox.RowIndex=0;

var comboeditbox = new REditComboBox(box);

comboeditbox.AddColumns(1, IMAGE_COLUMN);

comboeditbox.AddColumns(1, HIDDEN_COLUMN);

comboeditbox.TextColumn = 1;

comboeditbox.AddItem([image1, "Some option"]);

comboeditbox.AddItem([image2, "Another option"]);

comboeditbox.AddItem([image3, "Last option"]);

comboeditbox.RowIndex=0;

// activate suggestions while user types

comboeditbox.SuggestModel(comboeditbox, 1);

comboeditbox.Text = "You can edit here";

comboeditbox.Show();

}

ComboChanged(Sender, EventData) {

var item=Sender.Items[EventData];

if (item)

CApplication.Message(item[2]);

}

}

class Main {

function Main() {

try {

var Application=new CApplication(new MyForm(null));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo Exception;

}

8.8. TREE VIEWS, LIST VIEWS AND COMBO BOXES 161

}

}

Figure 8.13 shows the output.

Figure 8.13:
comboboxes.con output

RTreeView(MODEL LISTIVIEW), RIconView, RComboBox and
REditComboBox have a linear structure. However,
RTreeViews(MODEL TREEVIEW) cand handle complex tree structures.
RTreeView can also allow edit operations and some attributes for columns,
rows or individual cells. The ColumnIndex property set/gets the index of
the selected column. You could add properties to a specific cell by using
RTreeView.Columns[column index]AddProperties(string properties).
Available properties are:

162 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

Property name Notes

foreground, cell-foreground color as a string, eg: “#FF0000” or “red”

background, cell-background color as a string, eg: “#FF0000” or “red”

font font name as a string

family font family name

language

markup true or false

editable true or false

visible true or false

strikethrough true or false

ellipsize real number

alignment real number

style

rise

scale real number

treviews.con

include Application.con

include RForm.con

include RComboBox.con

include RTreeView.con

include RScrolledWindow.con

include RImage.con

class MyForm extends RForm {

protected var EditingCell;

MyForm(Owner) {

super(Owner);

var scroll = new RScrolledWindow(this);

scroll.VScrollPolicy = scroll.HScrollPolicy =

POLICY_AUTOMATIC;

scroll.Show();

var treeview = new RTreeView(scroll);

treeview.Model = MODEL_TREEVIEW;

treeview.AddColumn("Caption", NORMAL_COLUMN |

EDITABLE_COLUMN);

// allow resize for first column

treeview.Columns[0].Resizable=true;

// make column light red

8.8. TREE VIEWS, LIST VIEWS AND COMBO BOXES 163

treeview.Columns[0].BackColor=0xFF8080;

treeview.AddColumn("Description", MARKUP_COLUMN);

treeview.Columns[1].AddAttribute("background");

treeview.AddColumn("Combo", COMBO_COLUMN | EDITABLE_COLUMN);

treeview.AddColumn("Check", CHECK_COLUMN | EDITABLE_COLUMN);

treeview.OnStartEditing = this.StartEdit;

treeview.OnEndEditing = this.EndEdit;

treeview.Show();

// create a combo model for the treeview combo column

var combobox = new RComboBox(null);

combobox.AddColumns(1);

// when we have just one column, we can send the data

// without putting it in an array

combobox.AddItem("First option");

combobox.AddItem("Second option");

combobox.AddItem("Third option");

var combobox2 = new RComboBox(null);

combobox2.AddColumns(1);

combobox2.AddItem("True");

combobox2.AddItem("False");

// Note the color attribute, "#80FF80"

// corresponding to the place in which

// the attrebute was added

treeview.AddItem(["Properties", "Markup text",

"#80FF80", "First option", combobox, true]);

treeview.AddItem(["Properties", "Markup text",

"#8080FF", "Second option", combobox, true]);

treeview.AddItem(["Properties", "Markup text",

"#8080FF", "True", combobox2, true]);

var path=[1];

for (var i=0;i<10;i++) {

treeview.AddChild(path, ["Properties", "Markup

text", "#80FF80", "First option", combobox,

true]);

treeview.AddChild(path, ["Properties", "Markup

text", "#8080FF", "Second option", combobox,

true]);

// alternatively add 1 or 0 to the path array

path += i % 2;

}

164 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

// expand all paths

// you could also use Expand(path)

treeview.ExpandAll();

}

// EventData contains path/column

StartEdit(Sender, EventData) {

EditingCell = StrSplit(EventData, "/");

}

EndEdit(Sender, EventData) {

if (!EditingCell)

return;

var path = EditingCell[0];

// EditingCell[1] is a string ... we need a number

var column = value EditingCell[1];

var item=Sender.Items[path];

if (item) {

// make the change in the data model

// else it will be visible just for the user

item[column] = EventData;

}

}

}

class Main {

function Main() {

try {

var Application=new CApplication(new MyForm(null));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo Exception;

}

}

}

Figure 8.14 shows the output.

Note that when OnStartEditing and OnEndEditing are mapped, you will
be notified when the user changes data in the tree view. If you don’t

8.8. TREE VIEWS, LIST VIEWS AND COMBO BOXES 165

Figure 8.14:
treeviews.con output

handle these events and set the EDITABLE COLUMN flag, the changed
made will not propagate to the tree view items. Every OnStartEditing will
always be called, but OnEndEditing won’t be fired if the user cancels the
edit process. In this case OnCancelEditing will be called. Also, when using
AddAttribute, a virtual column is created in which you must put the
attribute value on the corresponding position.

OnStartEditing receives a string in the form path/column, where column is
the actual item column edited(not the tree view column).
OnCancelEditing gives no information in EventData, and OnEndEditing
has the new cell value as EventData.

166 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

8.9 Web views

The RWebView object manager a web browser view surface. On most
platforms it uses the WebKit library and it has similar behavior on most
platforms(mobiles and desktops). You can load URL’s or HTML
documents as string, you may cache images into the browser cache and you
can hijack link clicks from the user. It is possible to use html/css interfaces
to your application if you’re familiar with these technologies.

Concept Application Server comes with a full browser examples, called
WKB (found in Samples/WKB/WebKitTest.con).

You can load an URI by setting the URI property(string), or you can load
a by setting the Content property(string). When the
OnNavigationRequested event is mapped, you must handle explicitly the
navigation requests. EventData will contain the request URI. You can use
the Cache(string element name, string element content) to cache images on
the client.

webviews.con

1 include Application.con

2 include RForm.con

3 include RWebView.con

4 include RImage.con

5

6 class MyForm extends RForm {

7 MyForm(Owner) {

8 super(Owner);

9

10 var webview = new RWebView(this);

11 // add image to client cache

12 webview.Cache("concept.png",

ReadFile("conceptclienticon.png"));

13 webview.Content =

14 "Click on the image<hr/>"+

15 ""+

16 "<img border=’0’ src=’concept.png’ width=’100px’

height=’100px’ />"+

17 "";

18 // to handle our "special" link

19 webview.OnRequest2 = this.URLRequest;

20 webview.Show();

8.10. CLIPBOARD 167

21 }

22

23 URLRequest(Sender, EventData) {

24 //EventData is "GET http://testLink/\r\n"

25 var link=trim(StrSplit(EventData, " ")[1]);

26

27 if (link=="http://testLink/")

28 Sender.Content = "Hello Concept!

(${xmlURIUnescapeString(EventData)})<hr/>Go to wikipedia.org";

29 else

30 if (!Sender.URI) {

31 // open the URI

32 Sender.URI=link;

33 }

34 }

35

36 }

37

38 class Main {

39 function Main() {

40 try {

41 var Application=new CApplication(new MyForm(null));

42 Application.Init();

43 Application.Run();

44 Application.Done();

45 } catch (var Exception) {

46 echo Exception;

47 }

48 }

49 }

Figure 8.15 shows the output.

8.10 Clipboard

The clipboard is a software facility used for short-term data storage and/or
data transfer between documents or applications, via copy and paste
operations. It is most commonly a part of a GUI environment and is
usually implemented as an anonymous, temporary data buffer that can be
accessed from most or all programs within the environment via defined

168 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

Figure 8.15:
webviews.con output

programming interfaces1.

The Concept UI Framework provides the RClipboard class, defined in
RCliboard.con, for accessing the clipboard of the remote client. Note that
the clipboard access is supported on all desktop clients, but may not be
supported on specific mobile clients.

The RClipboard class has only static members (no need to instantiate a
clipboard object). The members are:

Copy (data)
Copies data to the clipboard. The data may be a string, a number or
an RImage object.

Clear ()
Clears the clipboard content buffer.

string GetImageBuffer (format=“png”)
Returns the image buffer in the clipboard, in the given format. If no
image is stored on the clipboard, it will return an empty string.

string GetText ()
Returns the text buffer in the clipboard. If no text is stored on the
clipboard, it will return an empty string.

The following example illustrates all of the RCliboard ’s functions, in a
minimal example.

1http://en.wikipedia.org/wiki/Clipboard (computing) on January 28, 2014

8.10. CLIPBOARD 169

ClipboardExmaple.con

1 include Application.con

2 include RImage.con

3 include RVBox.con

4 include RHBox.con

5 include RButton.con

6 include REdit.con

7 include RClipboard.con

8

9 class MyForm extends RForm {

10 var image;

11 var edit;

12

13 CopyTextClicked(Sender, EventData) {

14 RClipboard::Copy(edit.Text);

15 }

16

17 PasteTextClicked(Sender, EventData) {

18 edit.Text=RClipboard::GetText();

19 }

20

21 CopyImageClicked(Sender, EventData) {

22 RClipboard::Copy(image);

23 }

24

25 PasteImageClicked(Sender, EventData) {

26 var data=RClipboard::GetImageBuffer();

27 if (data) {

28 WriteFile(data,"cliptest.png");

29 image.Filename="cliptest.png";

30 }

31 }

32

33 ClearClipboardClicked(Sender, EventData) {

34 RClipboard::Clear();

35 }

36

37 MyForm(owner) {

38 super(owner);

39 var vbox = new RVBox(this);

40 vbox.Show();

41 image = new RImage(vbox);

42 image.Show();

43 edit = new REdit(vbox);

170 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

44 edit.Show();

45

46 var hbox = new RHBox(vbox);

47 hbox.Show();

48

49 var copyTextButton = new RButton(hbox);

50 copyTextButton.Caption = "Copy text";

51 copyTextButton.OnClicked = this.CopyTextClicked;

52 copyTextButton.Show();

53

54 var pasteTextButton = new RButton(hbox);

55 pasteTextButton.Caption = "Paste text";

56 pasteTextButton.OnClicked = this.PasteTextClicked;

57 pasteTextButton.Show();

58

59 var copyImageButton = new RButton(hbox);

60 copyImageButton.Caption = "Copy image";

61 copyImageButton.OnClicked = this.CopyImageClicked;

62 copyImageButton.Show();

63

64 var pasteImageButton = new RButton(hbox);

65 pasteImageButton.Caption = "Paste image";

66 pasteImageButton.OnClicked = this.PasteImageClicked;

67 pasteImageButton.Show();

68

69 var clearClipboardButton = new RButton(hbox);

70 clearClipboardButton.Caption = "Clear clipboard";

71 clearClipboardButton.OnClicked = this.ClearClipboardClicked;

72 clearClipboardButton.Show();

73 }

74 }

75

76

77 class Main {

78 Main() {

79 try {

80 var Application=new CApplication(new MyForm(NULL));

81 Application.Init();

82 Application.Run();

83 Application.Done();

84 } catch (var Exception) {

85 //echo Exception.Information;

86 }

87 }

88 }

8.11. LANGUAGE AND LOCALIZATION 171

The output should look like figure 8.16, depending on the used image.

Figure 8.16: ClipboardExmaple.con output

8.11 Language and localization

The Concept Client itself is language-independent. When using stock
buttons, the button layout and captions will be available to the user
according to the regional settings. However, you may need to support
multiple languages at your application level. For this, Concept Framework
provides a very simple and efficient class, called Lang that enables you to
write language-independent applications. Lang is a persistent key-value
system, that usually stores it’s elements in an XML file called
“string.table.xml”, located in the same directory with your application
main source.

Let’s look to a sample XML file first:

<?xml version="1.0"?>

<StringTable>

172 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

<default langid="de"/>

<string msgid="Name">

<lang id="en">Name</lang>

<lang id="de">Name</lang>

</string>

<string msgid="Surname">

<lang id="en">Surname</lang>

<lang id="de">Nachname</lang>

</string>

<string msgid="Invalid data was entered">

<lang id="en">Invalid data was entered</lang>

<lang id="de">

Ungltige Daten eingegeben</lang>

</string></StringTable>

For each string message in your application, you must have at least one
<lang> key.

Lang implements the << operator, that processes the given text according
to the selected language.

Let’s consider a code block using the above example:

MyForm(Owner) {

super(Owner);

// this will automatically load the

// string.table.xml file

var S = new Lang();

// we can set S.Language = "de";

// or we can set in the XML file

// <default langid="de"/>

var labelName = new RLabel(this);

// we just add S << before the actual caption

labelName.Caption = S << "Invalid data was entered";

labelName.Show();

}

When S.Language or default langid is set to “de”, on the user’s screen will
display “Ungltige Daten eingegeben” instead of “Invalid data was
entered”. If an undefined language or key were used with S <<, the actual
key will be used. For example Lang ¡¡ “This is not defined” will

8.12. LATENCY COMPENSATION 173

return“This is not defined”. You can then use the GeoIP library to find
out from where did a user connect to your application and set the language
identifier accordingly.

8.12 Latency compensation

Latency, or lag, is a delay between an user action and the server response,
usually caused by network problems like congestions or retransmissions.

Starting with Concept 4.0 a latency compensation protocol was added.
This is based on compiling Concept function to a simplified 3-register
code, that could be easily executed both by the client, simultaneously with
the server. This code, is interpreted by native clients and converted to
JavaScript by the JS client.

The protocol is activated per-object. For example, for compensating a
button click, the Compensated property must be set to true.

Note that the Compensated property must be set BEFORE mapping any
event for the given button.

The client may choose to stop the client-side execution if it misses some
data, or if detects that an instruction is conditioned by the server.

A simple latency compensation example:

include Application.con

include RVBox.con

include RButton.con

include RTextView.con

include RLabel.con

import standard.lib.thread

import standard.C.math

class MyForm extends RForm {

var edit;

var button;

// not this function

OnClick(Sender, EventData) {

174 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

var v = value edit.Text;

button.Caption = "" + v * v;

}

MyForm(owner) {

super(owner);

var vbox = new RVBox(this);

vbox.Show();

edit = new RTextView(vbox);

edit.Tooltip = "Enter a value";

edit.Show();

button = new RButton(vbox);

// enabled compensation for button

button.Compensable = true;

button.MinHeight = 50;

button.Caption = "Press to compute square";

// note that Compensable was set BEFORE

// setting the event handler

button.OnClicked = this.OnClick;

button.Show();

}

}

class Main {

Main() {

try {

var Application=new CApplication(new MyForm(NULL));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo Exception;

}

}

}

Now, the application simply does what it has to do. It computes the
square of the given value. When using latency compensation, the value is
computed immediately by the client, and by the server. In case the values
would be different, the server value has priority.

8.12. LATENCY COMPENSATION 175

Figure 8.17:
Compensation - immediately after button click

For better understanding, let’s insert a 3 seconds delay. The IsClient()
function is the only function with different behavior on server and client.
On client it returns true, on server it returns false.

The new OnClick function will look like this:

OnClick(Sender, EventData) {

var v = value edit.Text;

if (IsClient()) {

button.Caption = "" + v * v;

} else {

Sleep(3000);

button.Caption = "Server confirmed " + v * v;

}

}

The output is shown if figure 8.17, respectively 8.18.

If some function data needs to be hidden, the protect() function may be
used. Considering the previous example, the OnClick function may be
rewritten as:

OnClick(Sender, EventData) {

var v = value edit.Text;

button.Caption = "Server confirmed " + v * v;

protect();

// this code is never visible for the client

var password = "I am to lazy to write a better example";

// do something with password.

}

176 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

Figure 8.18:
Compensation - 3 seconds later

}

If the protect() function wasn’t called, the password would be visible to
the client.

Note that when using Compensable is set to true, the used event handler
function will be compiled and sent to the client, together with all the
functions used. For example, if OnClick would call a function called foo,
both functions will be sent to the client. Also, if foo would call other
functions, those will be also compiled and sent.

Keep in mind that the client may choose to stop the executing at any
point. For example, at the time writing the book, static functions are not
supported in client.

This engine is supported on all Concept 4.0 clients, Concept Client 3.0, and
Concept Client Mobile native clients (iOS 7 or greater and Android 4).

8.13 Asynchronous UI processing

Asynchronous UI processing will give the user a better feel of the
application. It will seem to respond faster and allows the user to abort an
operation. Concept 4.0 provides a number of mechanisms like green
threads and polling to avoid blocking calls and native threads.

Every UI application has a main loop, that dispatches the received

8.13. ASYNCHRONOUS UI PROCESSING 177

messages. Most of the time, this loop is idle. When is idle, it may call a
number of functions called Loopers.

A looper is a delegate automatically called by the main loop. It runs in the
same thread, so it should exit as fast as possible.

number RegisterLooper (delegate)
Register a delegate to run in the main loop. Returns a delegate id, to
be used with UnregisterLooper.

UnregisterLooper (number id)
Removes a delegate from the main loop.

A delegate may be remove by calling UnregisterLooper() or by simply
returning true when is called.

It is important to avoid making blocking calls in a looper. A blocking call
will stall the main loop, freezing the application.

Note that loopers run with a low priority (about 200 calls/second). You
should avoid having a large number of loopers, because it may create
delays in UI. A reasonable number is 10 with a recommended maximum to
50. There are no technical limitation for loopers, but after about 100 it
will cause delay in application responsiveness.

asyncui.con

include Application.con

include RVBox.con

include RButton.con

include REdit.con

include RLabel.con

import standard.lib.thread

import standard.C.math

class SumLooper {

var to;

var index = 1;

var result = 0;

SumLooper(to) {

178 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

this.to = to;

// register looper

RegisterLooper(this.Loop);

}

Loop() {

// check if finished

if (index > to) {

CApplication::Message("Sum is: ${this.result}");

return true;

}

result += index++;

}

}

class MyForm extends RForm {

var vbox;

var edit;

var button;

OnClick(Sender, EventData) {

new SumLooper(value edit.Text);

}

MyForm(owner) {

super(owner);

vbox = new RVBox(this);

vbox.Show();

var label = new RLabel(vbox);

label.Caption = "Sum from 1 to";

label.Show();

edit = new REdit(vbox);

edit.Text = "100";

edit.Tooltip = "Enter a value";

edit.Show();

button = new RButton(vbox);

button.Compensable = true;

button.Caption = "Press to compute sum";

button.OnClicked = this.OnClick;

button.Show();

// You could simply do n*(n+1)/2

}

8.13. ASYNCHRONOUS UI PROCESSING 179

Figure 8.19:
Asynchronous UI

}

class Main {

Main() {

try {

var Application=new CApplication(new MyForm(NULL));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo Exception;

}

}

}

The output is show in 8.19.

180 CHAPTER 8. CLOUD UI APPLICATION ARCHITECTURE

Chapter 9

Basic I/O

9.1 XML serialization

Concept Frameworks provides the Serializable base class. If a class inherits
Serializable, it will contain two additional methods, called Serialize and
UnSerialize.

Alternatively, a Concept class object can be serialized to a simple XML
version, when you don’t need to unserialize it, via the ToXML(class object,
short version=false, encoding=“UTF-8”) static function.

Note that when you serialize an object, you serialize all its
members(regardless of access). Serialization is recursive but has a cyclic
reference detector, in order to avoid excessive data in the XML. If a
member contains references to other class objects, those will be serialized,
even if they don’t extend Serializable.

The Serialize prototype: Serializable.Serialize(filename=“-”,
encoding=“UTF-8”)

If filename is “-” the XML data will be written to standard output (on
screen). Else, if a filename is given, it will be put to that file. If filename is
empty, a string containing the XML data will be returned.

include Serializable.con

181

182 CHAPTER 9. BASIC I/O

class Student {

var Name="";

var Course="";

var[] Friends;

}

class StudentList extends Serializable {

var[] Students;

}

class Main {

Main() {

var list = new StudentList();

var student1 = new Student();

student1.Name = "Eduard";

student1.Course = "Concept Programming";

list.Students += student1;

var student2 = new Student();

student2.Name = "Maria";

student2.Course = "Concept Programming";

list.Students += student2;

var student3 = new Student();

student3.Name = "John";

student3.Course = "Concept Programming";

list.Students += student3;

student1.Friends += student2;

student1.Friends += student3;

list.Serialize("data.xml");

// alternatively

// var buffer = list.Serialize("");

}

}

The resulting file:

<?xml version="1.0" encoding="UTF-8"?>

<object cycid="1" class="StudentList">

<member name="Students" type="array">

<array cycid="2">

9.1. XML SERIALIZATION 183

<element index="0" type="object">

<object cycid="3" class="Student">

<member name="Name" type="string">Eduard</member>

<member name="Course" type="string">Concept

Programming</member>

<member name="Friends" type="array">

<array cycid="4">

<element index="0" type="object">

<object cycid="5" class="Student">

<member name="Name" type="string">Maria</member>

<member name="Course" type="string">Concept

Programming</member>

<member name="Friends" type="array">

<array cycid="6"/>

</member>

</object>

</element>

<element index="1" type="object">

<object cycid="7" class="Student">

<member name="Name" type="string">John</member>

<member name="Course" type="string">Concept

Programming</member>

<member name="Friends" type="array">

<array cycid="8"/>

</member>

</object>

</element>

</array>

</member>

</object>

</element>

<element index="1" type="object">

<cyclic_reference refID="5"/>

</element>

<element index="2" type="object">

<cyclic_reference refID="7"/>

</element>

</array>

</member>

</object>

Note that every object is defined just once in the XML files. For references
of the same object, you have the cyclic reference tag referencing an already

184 CHAPTER 9. BASIC I/O

serialized object. This is a convenient way of storing data for your
applications, because is extremely easy to restore the data from the XML
file, using the Serialize.UnSerialize(file or buffer, is buffer=false, var
out err=null) function.

Note that your application must have a definition of the actual object
classes you unserialize.

include Serializable.con

// we must define all the serialized classes

class Student {

var Name="";

var Course="";

var[] Friends;

}

class StudentList extends Serializable {

var[] Students;

}

class Main {

Main() {

var list = Serializable.UnSerialize("data.xml");

if (list) {

var len = length list.Students;

for (var i = 0; i < len; i++) {

var student = list.Students[i];

echo "Student ${student.Name} (Course:

${student.Course}) was loaded and it has ${length

student.Friends} friends\n";

}

}

}

}

Will output:

Student Eduard (Course: Concept Programming) was loaded and it has

2 friends

Student Maria (Course: Concept Programming) was loaded and it has 0

friends

Student John (Course: Concept Programming) was loaded and it has 0

friends

9.1. XML SERIALIZATION 185

Alternatively, you can use the ToXML static function that serializes a class
object(one way), but doesn’t store meta data for restoring the data
structure. Note that is not mandatory for a class to extend Serializable for
one to be able to use ToXML.

For the first example, if we replace:

list.Serialize("data.xml");

with

echo ToXML(list);

Will output:

<?xml version="1.0" encoding="UTF-8"?>

<StudentList>

<Students type="array">

<element index="0" type="Student">

<Name type="string">Eduard</Name>

<Course type="string">Concept Programming</Course>

<Friends type="array">

<element index="0" type="Student">

<Name type="string">Maria</Name>

<Course type="string">Concept Programming</Course>

<Friends type="array"/>

</element>

<element index="1" type="Student">

<Name type="string">John</Name>

<Course type="string">Concept Programming</Course>

<Friends type="array"/>

</element>

</Friends>

</element>

<element index="1" type="Student">

<Name type="string">Maria</Name>

<Course type="string">Concept Programming</Course>

<Friends type="array"/>

</element>

<element index="2" type="Student">

186 CHAPTER 9. BASIC I/O

<Name type="string">John</Name>

<Course type="string">Concept Programming</Course>

<Friends type="array"/>

</element>

</Students>

</StudentList>

This is useful when exporting data to be used with other systems. By
using ToXML function, you avoid managing complex XML structures.

This can be simplified further more, by setting the short version parameter
to true. This will skip all the meta data associated with the data fields.

echo ToXML(list, true);

Will output:

<?xml version="1.0" encoding="UTF-8"?>

<StudentList>

<Students>

<Student>

<Name>Eduard</Name>

<Course>Concept Programming</Course>

<Friends>

<Student>

<Name>Maria</Name>

<Course>Concept Programming</Course>

<Friends/>

</Student>

<Student>

<Name>John</Name>

<Course>Concept Programming</Course>

<Friends/>

</Student>

</Friends>

</Student>

<Student>

<Name>Maria</Name>

<Course>Concept Programming</Course>

<Friends/>

</Student>

<Student>

<Name>John</Name>

9.1. XML SERIALIZATION 187

<Course>Concept Programming</Course>

<Friends/>

</Student>

</Students>

</StudentList>

The standard.lang.serialization static import libraries also adds some
convenient static function for accessing data members by their name.

boolean HasMember(object obj, string member_name)

boolean GetMember(object, obj, string member_name, var value[,

as_delegate=false])

boolean SetMember(object obj, string member_name, new_value)

object CreateObject(string class_name)

The HasMember function returns true if obj has a member called
member name.

GetMember sets the value parameter to the value of the member called
member name, and returns true if succeeded. If the as delegate parameter
is set to true, and textitmember name will be a function member name,
this function will set value to a delegate referencing the function. If is false,
the function will be evaluated (assuming that it takes no parameters).

The SetMember function will try to set the member called member name
to the given new value. If succeeded, it will return true.

The CreateObject will try to instantiate a class called class name and
return an object of that class (assuming that no constructor is defined or if
defined, it takes no parameters). If the class is not defined, it will return
null.

Another useful function is ToArray :

array ToArray(object)

This function converts an object to a key-value array, having member
names as keys and member values as values, for example:

import standard.lang.serialize

188 CHAPTER 9. BASIC I/O

class Student {

var Name = "";

var Course = "";

var[] Friends;

}

class Main {

Main() {

var student = new Student();

student.Name = "Maria";

student.Course = "Mathematics";

student.Friends = ["John", "Anna"];

echo ToArray(student);

}

}

The output:

Array {

[0,"Name"] => Maria

[1,"Course"] => Mathematics

[2,"Friends"] =>

Array {

[0] => John

[1] => Anna

}

}

9.2 JSON serialization

JSON, or JavaScript Object Notation, is an open standard format that
uses human-readable text to transmit data objects consisting of
attributevalue pairs. It is used primarily to transmit data between a server
and web application, as an alternative to XML. Although originally derived
from the JavaScript scripting language, JSON is a language-independent
data format, and code for parsing and generating JSON data is readily
available in a large variety of programming languages, including Concept.

Concept module standard.lib.json define two static functions:

9.2. JSON SERIALIZATION 189

string JSONSerialize(object, number array_as_objects=false);

and

array JSONDeserialize(string json_data);

JSONSerialize returns the coresponding JSON string associated with the
given object. The serialization works exactly as with XML, except that
reference links is not available. Special attention should be payed to cyclic
references, which can cause a stack overflow or infinite recursion. When
setting the array as objects flag, the key-value arrays will be serialized as if
they were a class object. The object parameter can be a class object or an
array, unlike XML which is limited to objects.

Upon deserialization, the initial object cannot be restored, because JSON
simply doesn’t keep any meta-data. Instead, an object representation as a
key-value array will be obtained. This has the advantage that the
deserializer program may not have a definition for the initial object class,
like in the case of XML serialization.

import standard.lib.json

class Student {

var Name="";

var Course="";

var[] Friends;

}

class Main {

Main() {

var list = new [];

var student1 = new Student();

student1.Name = "Eduard";

student1.Course = "Concept Programming";

list += student1;

var student2 = new Student();

student2.Name = "Maria";

student2.Course = "Concept Programming";

list += student2;

190 CHAPTER 9. BASIC I/O

var student3 = new Student();

student3.Name = "John";

student3.Course = "Concept Programming";

list += student3;

student1.Friends += student2;

student1.Friends += student3;

var json = JSONSerialize(list);

echo json;

}

}

Will produce:

[

{

"Name": "Eduard",

"Course": "Concept Programming",

"Friends": [

{

"Name": "Maria",

"Course": "Concept Programming",

"Friends": []

},

{

"Name": "John",

"Course": "Concept Programming",

"Friends": []

}

]

},

{

"Name": "Maria",

"Course": "Concept Programming",

"Friends": []

},

{

"Name": "John",

"Course": "Concept Programming",

"Friends": []

}

]

9.2. JSON SERIALIZATION 191

If in the previous example we’d run:

echo JSONDeserialize(json);

Will obtain a Concept array:

Array {

[0] =>

Array {

[0,"Name"] => Eduard

[1,"Course"] => Concept Programming

[2,"Friends"] =>

Array {

[0] =>

Array {

[0,"Name"] => Maria

[1,"Course"] => Concept Programming

[2,"Friends"] =>

Array {

}

}

[1] =>

Array {

[0,"Name"] => John

[1,"Course"] => Concept Programming

[2,"Friends"] =>

Array {

}

}

}

}

[1] =>

Array {

[0,"Name"] => Maria

[1,"Course"] => Concept Programming

[2,"Friends"] =>

Array {

}

}

[2] =>

Array {

[0,"Name"] => John

[1,"Course"] => Concept Programming

[2,"Friends"] =>

192 CHAPTER 9. BASIC I/O

Array {

}

}

}

In practice, JSON is useful when writing or interacting with http/web
services. JSON is preferred in web service because of its lightweight and its
focus on the data, instead the data and form, like XML.

9.3 Binarization

Similar to serialization, Concept provides ”binarization” API. Binarization
is the representation of an object or array to a binary buffer. This is more
efficient than XML or JSON serialization, both in terms of CPU usage and
memory.

Internally the data is stored using the following structures:

varsize
8 bit to 72 bit
if size <= 0x7D

store size on 8 bits
else
if size <= 0xFFFF

write 0x7E (8 bits)
write size on 16 bits (big endian)

else
write 0x7F (8 bits)
write size on 64 bits (big endian)

endif

string
variablesize string size + string buffer

variable
8 bit type
case type:

string (0x03)

9.3. BINARIZATION 193

string val
number (0x02)

64bit double val
object (0x04)

object
array (0x05)

array
delegate (0x06)

string class
string member

end case

object
32 bit: object id (if object id is negative, link to abs(object id). end)
string classname
while (string classmember (size ¿ 0))

variable

array
32 bit: object id (if object id is negative, link to abs(object id). end)
variablesize size
foreach element

string key
variable

endfor

string BinarizeObject (obj or array, mode = 0)
Returns a string buffer containing the binary version of the object or
array. If mode is 0, all members will be binarized. If mode is 1,
members having the default value will be omitted. For example:

class A {

var some_member = 1;

var some_other_member = 2;

A(val) {

some_other_member = val;

}

}

...

BinarizeObject(new A(3), 1);

...

194 CHAPTER 9. BASIC I/O

will cause some member to be skipped when binarizing, because it
has the default value, and no function or constructor set it. This may
be more efficient in resource usage. Any non-zero mode will skip the
default members. Additionally, mode 2 will also skip array members,
mode 3 will skip objects, mode 4 will skip both array and objects and
mode 5 will skip UI vectors (used internally by Concept Framework).
The function will return a string buffer representation of obj or array.

object UnBinarizeObject (string buffer, offset = 0, filter = [])
Restores the Concept objects from a buffer returned by
BinarizeObject. If offset is set, the function will parse the buffer
starting at the given offset. Additional, if filter is set, only object
members contained in the list will be un-binarized. For example (see
previous for class A definition), UnBinarizeObject(buffer, 0,
[”some member”]) will return an A object with only some member
initialized. If succeeded, the function will return a reconstructed
object obtained from the given input buffer.

1 import standard.lang.serialize

2

3 class Message {

4 var m = "hello";

5

6 Message(m) {

7 this.m = m;

8 }

9 }

10

11 class Main {

12 Main() {

13 var msg = new Message("Hello world!");

14 var buffer = BinarizeObject(msg);

15 var buffer_xml = SerializeObject(msg);

16 echo "Binary version: " + length buffer + " bytes\n";

17 echo "XML version: " + length buffer_xml + " bytes\n";

18 var recv_msg = UnBinarizeObject(buffer);

19 echo recv_msg.m;

20 }

21 }

Output:

9.3. BINARIZATION 195

Binary version: 30 bytes

XML version: 116 bytes

Hello world!

As you can see, the binary representation of the object is almost 4 times
smaller than XML.

Similar to the Serialization base class, you can also use Binarizable class,
by including Binarizable.con.

The Binarize prototype: Binarizable.Binarize()

The UnBinarize prototype: Binarizable.UnBinarize(var bufffer, number
offset = 0)

Using these two methods, the XML serialization example could be easily
modified to ”binarize” instead of XML serialize:

1 include Binarizable.con

2 import standard.C.io

3

4 class Student {

5 var Name="";

6 var Course="";

7 var[] Friends;

8 }

9

10 class StudentList extends Binarizable {

11 var[] Students;

12 }

13

14 class Main {

15 Main() {

16 var list = new StudentList();

17

18 var student1 = new Student();

19 student1.Name = "Eduard";

20 student1.Course = "Concept Programming";

21 list.Students += student1;

22

23 var student2 = new Student();

24 student2.Name = "Maria";

25 student2.Course = "Concept Programming";

26 list.Students += student2;

196 CHAPTER 9. BASIC I/O

27

28 var student3 = new Student();

29 student3.Name = "John";

30 student3.Course = "Concept Programming";

31 list.Students += student3;

32

33 student1.Friends += student2;

34 student1.Friends += student3;

35

36 WriteFile(list.Binarize(), "students.bin");

37 }

38 }

9.4 Compression

For even more memory efficiency in binarization, compression may be
used. The import library standard.lib.serialize provides two straight
forward APIs for compressing and decompressing string buffers.

string compress (string buffer, level = -1)
Returns the compressed version of the input buffer. level sets the
level of compression, between 0 (no compression) and 10 (maximum
compression).

string uncompress (string buffer)
Uncompresses the given buffer and returns the original buffer. If
buffer is not valid or corrupted, an empty string will be returned.

The previous binarization example could be modified to use compression:

1 import standard.lang.serialize

2

3 class Message {

4 var m = "hello";

5

6 Message(m) {

7 this.m = m;

8 }

9 }

9.5. FILES 197

10

11 class Messages {

12 var[] Messages;

13

14 operator += (m) {

15 Messages += m;

16 }

17 }

18

19 class Main {

20 Main() {

21 var msg = new Messages();

22 for (var i = 0; i < 100; i++)

23 msg += new Message("Hello world!");

24 var buffer = BinarizeObject(msg);

25 var buffer_compress = compress(buffer);

26 var buffer_xml = SerializeObject(msg);

27 echo "Binary version: " + length buffer + " bytes\n";

28 // note the size of the buffer

29 echo "Compressed version: " + length buffer_compress + "

bytes\n";

30 echo "XML version: " + length buffer_xml + " bytes\n";

31 var recv_msg = UnBinarizeObject(uncompress(buffer));

32 }

33 }

Output:

Binary version: 3130 bytes

Compressed version: 271 bytes

XML version: 14122 bytes

Keep in mind that compression/decompression will have an impact on the
CPU usage of your application. It is important to put it in balance: CPU
vs Memory or bandwidth or storage.

9.5 Files

Files are relatively easy to manage in Concept. A total of 3 native
interfaces are available.

198 CHAPTER 9. BASIC I/O

Lazy programmer interface
this is the simplest way to access relatively small files using
ReadFile(returns file content) and WriteFile(returns true if
succeeded, false if failed) static functions.

string ReadFile(string filename);

number WriteFile(string content, string filename);

File class
The recommended way of dealing with large files

C-style low-level interface
C file I/O functions ported in Concept. These function include fopen,
fclose, fseek, fread, fwrite and many more. See Concept
Documentation for static library standard.C.io for the complete list
of supported functions.

ReadFile simply loads a file into a string buffer, and WriteFile writes a
string buffer into the given file. If the file exists, it will be overwritten.

The File class is a wrapper of C I/O functions that can efficiently handle
files of any size. For opening a file, first you must set the Name property
to point to the given file. Then, a call to Open() must be made. If the file
was successfully opened, Open will return true.

Reading method Return

Read(var buffer, max size) the number of bytes read, or -1
on error

GetChar() the next character or empty
string on error

GetString(separator=””, max=0xFF) the next line in file or empty
string on error

Write is done via Write(string buffer) method, returning the bytes written
or -1 on error. All these methods throws simple static exception (strings
describing the error).

It is important to set the correct mode by setting Mode property(see
table), before calling Open.

9.5. FILES 199

File modes as used by C fopen function:
Mode Notes

“r” read: Open file for input operations. The file must exist.

“w” write: Create an empty file for output operations. If a file
with the same name already exists, its contents are discarded
and the file is treated as a new empty file.

“a” append: Open file for output at the end of a file. Output
operations always write data at the end of the file, expanding
it. Repositioning operations (Seek or C’s fseek) are ignored.
The file is created if it does not exist.

“r+” read/update: Open a file for update (both for input and
output). The file must exist.

“w+” write/update: Create an empty file and open it for up-
date (both for input and output). If a file with the same
name already exists its contents are discarded and the file is
treated as a new empty file.

“a+” append/update: Open a file for update (both for input
and output) with all output operations writing data at the
end of the file. Repositioning operations (Seek, fseek) affects
the next input operations, but output operations move the
position back to the end of file. The file is created if it does
not exist.

The EOF read-only property returns true when the end-of-file indicator is
set.

include File.con

class Main {

Main() {

if (!WriteFile("The quick brown fox jumps over the lazy

dog", "out.txt"))

return -1;

var file = new File();

// choose file

file.Name = "out.txt";

try {

if (file.Open()) {

var res = file.Read(var buffer, 0xFF);

if (res > 0)

echo buffer;

200 CHAPTER 9. BASIC I/O

file.Close();

}

} catch (var exc) {

echo "Errror: "+exc;

}

// delete the created file

_unlink("out.txt");

}

}

Outputs:

The quick brown fox jumps over the lazy dog

We could replace the above functions with File.Write and ReadFile
resulting in the same output(simplified version, exception handling):

include File.con

class Main {

Main() {

// set mode to write

var file = new File("wb");

file.Name = "out.txt";

if (file.Open()) {

file.Write("The quick brown fox jumps over the lazy

dog");

file.Close();

// read and print the file contents

echo ReadFile("out.txt");

_unlink("out.txt");

}

}

}

Seek(number offset, origin=SEEK SET) function changes the file position
indicator to offset bytes from origin. Origin can be SEEK SET(beginning
of the file), SEEK CUR(current position) or SEEK END(end of file).
Tell() function returns the actual position indicator.

9.6. LISTING DIRECTORIES 201

9.6 Listing directories

The DirectoryList class provides access to directory files. The class
implements two methods:

static array DirectoryList::ListByType(string directory, number

type);

static array DirectoryList::ListByExt(string directory, array

extensions, no_dir = true);

type must be one of the following values:

S IFREG
regular file

S IFBLK
block device

S IFDIR
directory

S IFCHR
character device

S IFIFO
FIFO/pipe

ListByType will return an array containing all the files of the given type in
the directory.

ListByExt will return an array containing all the files having the given
extension(s). If you want to list all the files in a directory, you can call:

var file_list = DirectoryList.ListByExt(directory, ["*"]);

For example, if you want to list txt and pdf extensions, the following call
may be used:

var file_list = DirectoryList.ListByExt(directory, ["txt", "pdf"]);

202 CHAPTER 9. BASIC I/O

When the no dir parameter is set to false, the function will also return the
directories for satisfying the given criteria.

Both function will return the files sorted by name. Note that sorting is
case-sensitive.

1 include DirectoryList.con

2

3 class Main {

4 Main() {

5 echo DirectoryList.ListByExt(".", ["*"], false);

6 }

7 }

The above example will show the contents of the current directory.

9.7 File system

The IO class, defined in IO.con provides basic file system management
functions. These functions are also defined in standard.C.io using the same
prototypes as the equivalent C functions.

IO’s static members:

Error ()
Returns the the last error I/O error code (equivalent to C’s errno)

ChDir (string path)
Changes the current directory to path. Returns 0 on success.

Erase (string filename)
Erases filename. Returns 0 on success.

RmDir (string path)
Removes the path. Note that path must be empty. Returns 0 on
success

MkDir (string path)
Creates a new directory described by path. Returns 0 on success.

9.7. FILE SYSTEM 203

Remove (string filename)
Deletes filename. Returns 0 on success.

Exists (string path)
Checks if file or directory exists. Returns true if the path exists, false
otherwise.

Exec (string execpath, array parameters=null)
Executes execpath with the given parameters.

Stat (string path)
Obtains information about the named file and returns it as a
key-value array, containing the following keys: st gid, st atime,
st ctime, st dev, st ino, st mode, st mtime, st nlink, st rdev, st size
and st uid. The path argument points to a pathname naming a file.
Read, write, or execute permission of the named file is not required.
On error, it returns an empty array.

Besides the IO class, the IO.con file also defines the Env class, for
accessing environment variables of the current process.

Env ’s static members:

string Get (string envname)
Searches the environment of the calling process (see the Base
Definitions volume of IEEE Std 1003.1-2001, Chapter 8, Environment
Variables) for the environment variable name if it exists and return
its value. If the variable is not defined, it returns an empty string.

number Put (string varexpr)
Will use the varexpr argument to set environment variable values.
The varexpr argument should be a string of the form “name=value”.
This function shall make the value of the environment variable name
equal to value by altering an existing variable or creating a new one.
On success, the function returns 0.

Both Env and IO functions are defined as static functions, so no need to
create objects for these classes.

For example, if wanted to create a directory, a call to IO::MkDir could be
made:

204 CHAPTER 9. BASIC I/O

1 include IO.con

2

3 class Main {

4 Main() {

5 if (IO.MkDir("test"))

6 echo "Error: ${strerror(IO::Error())}";

7 }

8 }

This will create a directory called test, if not exists, in the current
directory.

The error code returned by IO::Error can be converted to a string, by
using the strerror(number errorcode) static function, defined in
standard.C.io.

1 include IO.con

2

3 class Main {

4 function Main() {

5 var temp = Env.Get("TEMP");

6 if (!temp)

7 temp = Env.Get("TMP");

8 echo temp;

9 }

10 }

You could get the temporary directory location by reading the TEMP or
TMP environment variables (depending on the operating system).

Note that IO::RmDir will return an error when trying to delete a
directory. For successfully deleting a directory, you must first delete all its
contents (files and subdirectories).

9.8 Configuration files

Concept Framework implements two static functions, IniGet and IniSet to
provide access to custom configuration files. Both functions are
implemented in standard.C.io import library.

9.8. CONFIGURATION FILES 205

string IniGet(string ini_filename, string section, string key,

string default_value="");

boolean IniSet(string ini_filename, string section, string key,

string value="");

IniGet returns the value associated with the given key in the given section
in the file specified by ini filename, or default value if the key is not
present in the given ini file.

IniSet sets the given key in the given section, in the given ini filename to
the given value. Note that all values must be strings. Returns true on
success or false on error (for example if it has not writing rights for
ini filename).

This is a convenient way of storing database login settings or various kind
of data, that needs to be viewed or edited by humans.

A configuration files must contain sections, enclosed by brakets [], and
key-value pairs. It may contain comments, prefixed by “;”. Each comment
ends at the line end.

configuration.ini

[SomeSection]

; you can add coments by prefixing them with ";"

SomeStringValue = "String value"

SomeNumberValue = 10

[SomeOtherSection]

OtherValue = "test"

A call to

IniGet("configuration.ini", "SomeSection", "SomeStringValue")

will return

String value

206 CHAPTER 9. BASIC I/O

Note that you request SomeNumberValue, a string containing “10” will be
returned.

9.9 Pipes

An anonymous pipe is a simplex FIFO communication channel that may
be used for one-way interprocess communication (IPC). An
implementation is often integrated into the operating system’s file IO
subsystem. Typically a parent program opens anonymous pipes, and
creates a new process that inherits the other ends of the pipes, or creates
several new processes and arranges them in a pipeline.

Anonymous pipes can be created by using the pipe(read pipe, write pipe)
defined in standard.C.io import library. On succeeded, pipe will return 0
and will set read pipe and write pipe to file descriptors. Then, simply use
the read(file descriptor, var buffer, number max size) and
write(file descriptor, string buffer) static functions for reading and writing
on the pipe. Both function return the number of bytes read, respectively
written or -1 in case of error. Note that the returned descriptors are
read-only, respectively write-only.

At the end, remember to close both file descriptors by calling
close(read pipe) and close(write pipe) to avoid memory leaks.

PipeServer.con

import standard.C.io

import standard.lib.thread

define MAX_BUFFER 100

class Main {

var write_pipe;

Thread() {

// create the child process and wait its finish

exec("concept", "PipeChild.con", "$write_pipe");

}

Main() {

if (!pipe(var read_pipe, write_pipe)) {

9.9. PIPES 207

// create the child thread

RunThread(this.Thread);

read(read_pipe, var buffer, MAX_BUFFER);

echo buffer;

close(read_pipe);

close(write_pipe);

} else

echo "Error creating pipe";

}

}

PipeClient.con

import standard.C.io

import standard.lang.cli

class Main {

Main() {

var arguments = CLArg();

if (!arguments)

echo "No arguments received";

var write_pipe = value arguments[0];

write(write_pipe, "Hello from the child process");

close(write_pipe);

}

}

The CLArg() function defined in standard.lang.cli import library, returns
the parameters received by the program. This is useful for CLI
(command-line interpreter) applications, where you want the user to send
parameters to your application. The return value of the Main constructor
will be sent back to the command line shell.

RunThread runs the given delegate in a separate thread. This will be
discussed in the Multi-threading section of this book.

The previous example will print

Hello from the child process

208 CHAPTER 9. BASIC I/O

Alternatively, a program output or input can be redirected to a pipe by
using the File class discussed earlier, with the only difference that instead
of calling Open(), POpen() (short for pipe open) will be used. Instead of
setting the File.Name property to an actual file, we will set to the program
needed whose output or input is to be redirected. Note that just the “rb”
and “rb” modes are available. You can redirect only the input or only the
output.

POpenServer.con

include File.con

class Main {

Main() {

// set mode to write

var file = new File("rb");

file.Name = "concept child2.con";

if (file.POpen()) {

// pipe opened!

file.Read(var buffer, 100);

echo buffer;

file.Close();

}

}

}

POpenClient.con

class Main {

Main() {

echo "Hello world from a pipe application";

}

}

Will output:

Hello world from a pipe application

When possible, this is the recommended way of creating pipes between
processes, due to its simplicity and no actual threads are created or needed.

Note that both write and read operations on pipe can block. write may

9.10. REMOTE FILES 209

block if the buffer is full (the data was not read by the other process). read
will block if the buffer is empty, until a write or a close operation will
occur.

9.10 Remote files

Some time the files needed are not located on the Concept Application
Server. The URL class provides access to remote files located, for example,
on a HTTP server or FTP server.

URL has an extremely simple interface, independent of the network
protocol. It has the following members:

Get (string url, post array=null, cert verification=true,
robot id=CURL ROBOTID, no post=false)
gets a remote file described by the url parameter. If using http, you
may post variables via the post array key-value array. For example,
if you want to post via HTTP a variable named “query” you must
set, post array[“query”] = “desired value”

IsSuccessfull ()
returns true if the previous Get call was successful (HTTP only)

IsRedirect ()
returns true if the previous Get returned a redirect. The location of
the redirect can be obtain by reading the Location property

ContentType : read-only property
Returns the content type (HTTP only)

ContentLength : read-only property
Returns the content length in bytes

Location : read-only property
Returns the current location (HTTP only)

HTTPVersion : read-only property
Returns the current location (HTTP only)

Host : read-only property
Returns the host used by the current request

210 CHAPTER 9. BASIC I/O

Response : read-only property
Returns the HTTP response code (HTTP only)

Headers : read-only property
Returns the HTTP headers (HTTP only)

Data : read-only property
Returns the file content as string buffer

URL is also useful in accessing REST API’s or SOAP-based services. It
can handle secured TLS or SSL connections.

URLExample.con

include URL.con

class Main {

Main() {

var url=new URL();

// get the first web page in the world

url.Get("http://info.cern.ch/hypertext/WWW/TheProject.html");

if (url.IsSuccessful())

echo url.Data;

else

echo "Error ${url.Response}!";

}

}

The same example, can be modified, when accessing a file on any other
protocol other than HTTP, for example FTP:

var url=new URL();

url.Get("ftp://user:password@your.ftp.org/file.txt");

if (url.Data)

echo url.Data;

Or a local file:

var urlLocal=new URL();

urlLocal.Get("file:///home/eduard/file.txt");

if (urlLocal.Data)

echo urlLocal.Data;

9.11. CSV FILES 211

For low level access to the file transfer see the Concept Documentation for
standard.net.curl import library.

9.11 CSV files

A comma-separated values (CSV) (also sometimes called
character-separated values, because the separator character does not have
to be a comma) file stores tabular data (numbers and text) in plain-text
form. Plain text means that the file is a sequence of characters, with no
data that has to be interpreted instead, as binary numbers. A CSV file
consists of any number of records, separated by line breaks of some kind;
each record consists of fields, separated by some other character or string,
most commonly a literal comma or tab. Usually, all records have an
identical sequence of fields. The Concept Framework provides the CSV
class, defined in CSV.con for handling this type of file.

CSV class members:

Delim : string property (default is ’,’)
Sets the field delimiter

Quote : string property (default is ‘”’)
Sets the field enclosing character

Error : number property
Gets the last error code

ErrorString : number property
Gets the last error as a human readable string

array Parse (string data, number is complete=false)
Parses a block of csv data (may be complete or not). If the block is
not complete, only the values for the complete rows will be returned,
the incomplete rows being returned on the next call. Returns an
array containing the parsed rows as arrays.

static Do (string csv buffer)
Parses the CSV buffer and return its content as an array of rows
(arrays).

212 CHAPTER 9. BASIC I/O

Done ()
Releases the CSV parser

Assuming we have the following CSV file, called test.csv:

Latitude,Longitude,Name

48.1,0.25,"First point"

49.2,1.1,"Second point"

47.5,0.75,"Third point"

We could read it as it follows:

include CSV.con

import standard.C.io

class Main {

function Main() {

echo CSV::Do(ReadFile("test.csv"));

}

}

Output:

Array {

[0] =>

Array {

[0] => Latitude

[1] => Longitude

[2] => Name

}

[1] =>

Array {

[0] => 48.1

[1] => 0.25

[2] => First point

}

[2] =>

Array {

[0] => 49.2

[1] => 1.1

[2] => Second point

}

[3] =>

9.12. ARCHIVE FILES 213

Array {

[0] => 47.5

[1] => 0.75

[2] => Third point

}

}

For large CSV files, it is recommended that you use the Parse method
instead for the simple CSV::Do static function, for minimizing the memory
usage.

[..]

// f is a File

var csv = new CSV();

// read 64k blocks

while (f.Read(var buffer, 0xFFFF)>0) {

do_something_with_these_Records(csv.Parse(block));

}

csv.Close();

[..]

CSV is a simple an convenient way of exchanging data between
applications, while maintaining a human-readable structure. Lots of
applications can handle CSVs, like Microsoft Excel, OpenOffice.org Calc or
LibreOffice Calc.

9.12 Archive files

The Concept Framework comes with support for zip files. All the zip static
functions are defined in standard.arch.zip (see Concept Framework
documentation). The Arc class, defined in Arc.con provides a convenient
way of dealing with archived files.

The archive creation is strait-forward:

include Arc.con

class Main {

Main() {

var arc=Arc::Create("archive.zip");

214 CHAPTER 9. BASIC I/O

// a file named readme.txt must be created first

Arc::Add(arc, "readme.txt");

Arc::AddContent(arc, "dir/anotherfile.txt", "This is the

file content");

Arc::Close(arc);

}

}

The unpacking is even simpler:

include Arc.con

class Main {

Main() {

Arc::UnZip("archive.zip");

}

}

You can pack either existing files, or files specified by name and buffer
content (see Arc::AddContent).

9.13 OCR

OCR(Optical Character Recognition) refers to a mechanism of identifying
text in scans or images of printed text. Concept Framework offers OCR
(Optical Character Recognition) support via a simple function defined in
standard.lib.ocr. The OCR API is based on an open source library called
Tesseract. The OCR function, taks two parameters: the image filename
(must be an uncompressed .tif or .bmp) to extract the text from, and the
output buffer. On success, the function returns 0.

The OCR function is straight forward:

ocrexample.con

import standard.lib.ocr

class Main {

Main() {

if (!OCR("eurotext.tif", var data))

9.13. OCR 215

echo data;

}

}

Figure 9.1:
eurotext.tif, used as input in ocrexample.con

The output:
The (quick) [brown] fox jumps!
Over the $43,456.78 <lazy> #90 dog
& duck/goose, as 12.5% of E-mail
from aspammer@website.com is spam.
Der ,,schnelle” braune Fuchs springt
uber den faulen Hund. Le renard brun
¡¡rapide saute par-dessus le chien
paresseux. La volpe marrone rapida
salta sopra il cane pigro. El zorro
marron rpido salta sobre el perro
perezoso. A raposa marrom rpida
salta sobre o 050 preguicoso.
To perform OCR on a scanned PDF document, you could user the
following function:

import standard.lib.poppler

import standard.C.io

[..]

static PDFText(var pdf_buffer) {

216 CHAPTER 9. BASIC I/O

var res = "";

var pdf=PDFLoadBuffer(buffer, "", var err);

if (pdf) {

var pages=PDFPageCount(pdf);

if (pages) {

for (var i = 0; i < pages; i++) {

// see if the pdf contains any actual text

// var page_text = PDFPageText(pdf, i) + "\n;

// you could also process the attachments

// echo PDFAttachments(pdf);

if (PDFPageImage(pdf, 0, "p$i.bmp", "bmp", 3)) {

if (!OCR("temp/p0.bmp", var data))

res+=data+"\n\n";

_unlink("p$i.bmp");

}

}

}

PDFClose(pdf);

}

return res;

}

[..]

echo PDFText(ReadFile("test.pdf"));

[..]

See Concept Framework Documentation for a list containing all the
standard.lib.poppler PDF read functions.

If you want to process a png or jpeg file, you must first convert it to a
uncompressed tiff or bmp. This can be done by using the
win32.graph.freeimage import library. Note that this is not related to
Microsoft Windows. The package name was maintained for
backwards-compatibility from the first Concept version. The library itself
is cross-platform.

import win32.graph.freeimage

[..]

static ConvertImage(string image_name, string out_name) {

var type = FreeImage_GetFileType(image_name);

image_type = ToLower(image_type);

if (type < 0)

return true;

9.14. XML MANIPULATION 217

var hBitmap=FreeImage_Load(type, image_name, 0);

if (hBitmap) {

// image type should be FIF_BMP or FIF_TIFF

if (!FreeImage_Save(FIF_BMP, hBitmap, out_name,0)) {

FreeImage_Unload(hBitmap);

return false;

}

return true;

}

return false;

}

[..]

if (ConvertImage("input.png", "output.bmp") &&

(!OCR("output.bmp", var data)))

echo data;

[..]

See the win32.graph.freeimage documentation for a list of all the APIs.
Alternatively, you could convert and process images with the more
powerful standard.graph.imagemagick library based on MagickWand
library.

9.14 XML manipulation

Extensible Markup Language (XML) is a markup language that defines a
set of rules for encoding documents in a format that is both
human-readable and machine-readable. It holds both the data and the
structure. Concept framework XML APIs have support for XPath, the
XML Path Language, a query language for selecting nodes from an XML
document. In addition, XPath may be used to compute values (e.g.,
strings, numbers, or Boolean values) from the content of an XML
document.

The XMLDocument and XMLNode classes manage the creation, read and
write of the XML documents. Each XMLDocument has only one Root
node that may have multiple children.

The XMLDocument is able to load XML and HTML documents. The
HTML documents will be converted to XHTML, to be compatible with its

218 CHAPTER 9. BASIC I/O

methods and document model.

For all XML processing and serialization Concept Frameworks uses the
powerful libxml2 library, ported to Concept via the import library
standard.lib.xml. The static function have identical names and parameters
with libxml2. You can check the libxml2 documentation if you need
low-level access to your XML file.

XMLNode members:
Member Return Type

Name the node name as a string property

Handle the node handle for low-level operations property

Child first child as XMLNode or null property

Parent parent as XMLNode or null property

Next next sibling as XMLNode or null property

Prev previous sibling property

Path node path as a string property

Properties key-value array property

Content the node content as string (read/write) property

CreateNew(name) a new name node static

AddChild(child) adds child (as XMLNode) method

AddNext(child) adds sibling after (as XMLNode) method

AddPrev(child) adds sibling before (as XMLNode) method

Copy(children=false) a new cloned node method

XMLNode must never be created by using the standard constructor. The
corect way is:

var node = XMLNode.CreateNew("nodeName");

Note that a node created with CreateNew that won’t be added to a
document(or another node), must be explicitly freed by using the Free
method.

XMLDocument provides the following members:

Root : property (XMLNode)
Sets or gets the root node

Encoding : property (string), default is UTF-8
Sets or gets the document encoding

9.14. XML MANIPULATION 219

Filename : property (string), default is “document.xml”
Sets or gets the target XML filename

Version : property (string), default is 1.0
Sets or gets the XML version

Errors : property (array)
Gets the parsing errors

ErrorsText : property (string)
Gets the errors as human-readable text

GetXPath (string path)
Evaluate an XPath expression and returns result as an XMLNode
array

Create ()
Creates an empty XML document

LoadString (string buffer)
Loads an XML document from the given buffer

Load ()
Loads an XML document from a file specified by the Filename
property

LoadHTML (string buffer)
Loads an XML document from an HTML string

Save ()
Saves the XML document to a file specified by the Filename property

SaveString ()
Saves the XML document to a buffer and returns it.

NewNodeName (string name)
Creates a new XMLNode having the given name. Note that the node
is not added to the document.

The following example has the code indented to correspond the XML level.

XMLExample.con

220 CHAPTER 9. BASIC I/O

include XMLDocument.con

class Main {

function Main() {

var doc = new XMLDocument();

doc.Filename = "sample.xml";

doc.Create();

var node = doc.NewNode("XMLTest");

node.Content = "Hello John!";

node.SetProperty("Book","Concept Programming");

var child = doc.NewNode("John");

child.Content = "John’s data";

var child2 = doc.NewNode("Maria");

child2.Content = "Maria’s data";

child.AddNext(child2);

// dublicate child and add it

child.AddNext(child.Copy());

node.AddChild(child);

doc.Root = node;

// you could print the content by using

// var xml = doc.SaveString();

// save it to disk.

doc.Save();

// loading the XML

var doc2 = new XMLDocument();

doc2.Filename = "sample.xml";

doc2.Load();

// alternatively colud use

// doc2.LoadString(xml)

var node2 = doc2.Root;

echo node2.GetProperty("Book");

node2 = node2.Child;

while (node2) {

echo node2.Name;

echo "\n";

node2 = node2.Next;

}

}

}

The resulting XML file (sample.xml)

9.14. XML MANIPULATION 221

<?xml version="1.0" encoding="UTF-8"?>

<XMLTest Book="Concept Programming">

<John>John’s data</John>

<John>John’s data</John>

<Maria>Maria’s data</Maria>

</XMLTest>

When dealing with large XML files, XPath may be a cleaner solution for
extracting data. If considering the previous example, the XPath version
will be:

[..]

var nodes = doc2.GetXPath("/XMLTest[@Book=’Concept

Programming’]/John");

echo nodes;

[..]

var len = length nodes;

for (var i=0; i<len; i++) {

var node = nodes[i];

echo node.Name+"\n";

}

[..]

Will return all the nodes named John under the XMLTest node with a
property called Book that is “Concept Programming”, in our case two
nodes.

Array {

[0] => XMLNode

[1] => XMLNode

}

John

John

You can also select by node values. Let’s consider the following XML
snippet:

<?xml version="1.0" encoding="ISO-8859-1"?>

<bookstore>

<book category="COOKING">

<title lang="en">Everyday Italian</title>

<author>Giada De Laurentiis</author>

222 CHAPTER 9. BASIC I/O

<year>2005</year>

<price>30.00</price>

</book>

[...]

XPath lets you create complex queries, like
“/bookstore/book[price>35]/title” selecting all the title nodes with a price
higher than 35. All of the GetXPath results are stored in arrays of
XMNode.

9.15 XSLT and XSL-FO

XSLT (Extensible Stylesheet Language Transformations) is a language for
transforming XML documents into other XML documents, or other objects
such as HTML for web pages, plain text or into XSL Formatting Objects
which can then be converted to PDF or PostScript, RTF and PNG (when
using Apache FOP).

XSL Formatting Objects, or XSL-FO, is a markup language for XML
document formatting which is most often used to generate PDFs. XSL-FO
is part of XSL (Extensible Stylesheet Language), a set of W3C
technologies designed for the transformation and formatting of XML data.

Concept Frameworks has two XSLT processing import libraries:
standard.lib.xslt, based on Sablotron and standard.lib.xslt2 based on
libxslt2.

standard.lib.xslt2 is recommended because of its extended functionality
like the ability to call Concept code directly from the XSLT file.

There are just three static function that manage the entire process:

XSLTRegister (object)
Register a Concept class to be available for execution from XSLT file

XSLTProcess (string xml data, string xsl data[, array parameters])
Register a Concept class to be available for execution from XSLT file.
The function returns a string containing the transformed data. The

9.15. XSLT AND XSL-FO 223

optional parameters, if set, must be in the form [“variable1”,
“value1”, “variable2”, “value2”...].

XSLTError ()
Returns the errors in XSLTProcess or an empty string

XSLT source file can contain complex logic with conditions, recursive
templates, loops and Concept function calls. Note that only static function
members can be called.

XSLTExample.con

import standard.lib.xslt2

import standard.C.io

class Main {

static function foo(name) {

return "This text comes from Concept($name)";

}

function Main() {

XSLTRegister(this);

echo XSLTProcess(ReadFile("test2.xml"),

ReadFile("test2.xsl"));

var err = XSLTError();

if (err)

echo err;

}

}

The corresponding XSLT file: transform.xsl

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:csp="http://www.devronium.com/csp"

extension-element-prefixes="csp">

<!-- optional: <xsl:output method="html" indent="yes"/> -->

<xsl:template match="/">

<html>

<body>

<h2>My CD Collection</h2>

224 CHAPTER 9. BASIC I/O

<table border="0">

<tr bgcolor="#e0e0e0">

<th>Title</th>

<th>Artist</th>

<th>Concept Callback</th>

</tr>

<xsl:for-each select="catalog/cd[artist=’Bob Dylan’]">

<tr>

<td><xsl:value-of select="title"/></td>

<td><xsl:value-of select="artist"/></td>

<!-- Call a Concept function (Main.foo) -->

<td><xsl:value-of select="csp:Main.foo(artist)"/></td>

</tr>

</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

Note that extension-element-prefixes=“csp” must be added for the
Concept callback to work.

data.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<catalog>

<cd>

<title>Empire Burlesque</title>

<artist>Bob Dylan</artist>

<country>USA</country>

<company>Columbia</company>

<price>10.90</price>

<year>1985</year>

</cd>

<cd>

<title>Still got the blues</title>

<artist>Gary Moore</artist>

<country>UK</country>

<company>Virgin records</company>

<price>10.20</price>

<year>1990</year>

</cd>

9.15. XSLT AND XSL-FO 225

Figure 9.2:
XSLTExample.con output

<cd>

<title>For the good times</title>

<artist>Kenny Rogers</artist>

<country>UK</country>

<company>Mucik Master</company>

<price>8.70</price>

<year>1995</year>

</cd>

</catalog>

The output:

<html>

<body>

<h2>My CD Collection</h2>

<table border="0">

<tr bgcolor="#e0e0e0">

<th>Title</th>

<th>Artist</th>

<th>Concept Callback</th>

</tr>

<tr>

<td>Empire Burlesque</td>

<td>Bob Dylan</td>

<td>This text comes from Concept(Bob Dylan)</td>

</tr>

</table>

</body>

</html>

XSLT is useful for separating the design from the code when creating
Concept http:// applications.

226 CHAPTER 9. BASIC I/O

XSL-FO transformation are done by using the standard.lib.xslfo import
library, based on libfo (part of the xmlroff project). It doesn’t cover the
entire XSL-FO specification, being recommended only for lightweight
documents. For complex documents the use of Apache FOP is
recommended (and invoked from the comand line via the system API).

Like standard.lib.xslt2, standard.lib.xslfo implements three functions that
handle all the processing:

FOTransform (string xsl file, string out file,
format mode=FO FLAG FORMAT AUTO, base xsltfile=“””,
compat=false, validation=false, continue after error=true)
Transforms the file specified by xsl file to the out file as pdf or post
script. Returns 0 on success.

FOTransformString (string xsl string, string out file,
format mode=FO FLAG FORMAT AUTO, base xsltfile=“””,
compat=false, validation=false, continue after error=true)
Transforms the file specified string to the out file as pdf or post
script. Returns 0 on success.

FOError ()
Returns the last error in FOTransform/FOTransformString or an
empty string

XSLFOExample.con

import standard.lib.xslfo

class Main {

function Main() {

// The buffer version

// if (FOTransformString(ReadFile("table.fo"), "out.pdf")) {

// echo FOError();

// }

if (FOTransform("example.fo", "example.pdf"))

echo FOError();

}

}

table.fo

9.15. XSLT AND XSL-FO 227

<?xml version="1.0" encoding="ISO-8859-1"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>

<fo:simple-page-master master-name="A4">

<fo:region-body />

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-reference="A4">

<fo:flow flow-name="xsl-region-body">

<fo:block>Hello World!</fo:block>

</fo:flow>

</fo:page-sequence>

</fo:root>

The resulting PDF will have an A4 page saying “Hello world!”.

standard.lib.xslfo provides limited support to XSL-FO. For complex
layouts, Apache FOP is recommended because it supports the full
specification. After installing FOP, the same application can be rewritten.

XSLFOExampleFOP.con

import standard.C.io

class Main {

function Main() {

if (system("fop table.fo out.pdf"))

echo "Error in fop";

}

}

The system static function simply executes a command on the server shell.

As a note, try to avoid generating layouts like reports or HTML pages
from Concept code, or any other kind of programming language. XSLT
and XSL-FO are standard technologies specially created for generating
documents. Both of them are great tools for creating dynamic http-based
applications and beautiful, flexible and standards-based reports for your

228 CHAPTER 9. BASIC I/O

applications.

A great crash-course tutorial on both XSLT and XSL-FO can be found on
w3schools.com with lots of examples from simple layouts to complex
documents.

9.16 Classic web application basics

You can create classic web applications (http-based) in Concept that run
via Concept CGI with Apache, nginx and most web servers that support
CGI.

Apache Concept CGI settings (in httpd.conf or separate file included by
httpd.conf)

<IfModule alias_module>

Concept Web - autoconfigure for Apache

ScriptAlias /con/ "[INSTALLDIR]/bin/"

AddType application/x-httpd-con .con

Uncomment next line if you want cgi for all concept extensions

AddType application/x-httpd-con .csp

AddType application/x-httpd-concept .csp

Action application/x-httpd-con "/con/concept-cgi"

<Directory "[INSTALLDIR]/bin/">

AllowOverride None

Options None

Order allow,deny

Allow from all

</Directory>

</IfModule>

[INSTALLDIR] must be replaced with your installation directory. On
Windows, usually C:/Program Files/Concept and on linux, unix and bsd
/usr/local. Note that on Windows you must replace concept-cgi with
concept-cgi.exe.

Alternatively you can use the Concept module and concept cache module.
However this is not recommended for developing because its caching
systems may affect the debugging process.

9.16. CLASSIC WEB APPLICATION BASICS 229

LoadModule concept_module modules/mod_concept.so

LoadModule concept_cache_module modules/mod_conceptcache.so

Web applications based on http:// are a Conpcet feature, not a purpose,
and it’s recommended that you create them when you can’t use the
concept:// protocol.

All web applications must include the WebDocument class to gain access
to cookies, sessions and get/post variables. Also, it’s recommended that
you split your application into two parts: the UI template as an XSLT
document and the business part of the application that implements all the
logic.

Important WebDocument member:

Content : property, string (default ”text/html”)
Sets or gets the document content type

UseSessions : property, boolean (default true)
Sessions enables you to store variables dependent of a specific user of
the application. This property must be set before BeginDocument is
called.

Status : property, read-only
Gets the document status. It returns DOCUMENT NOTINIT,
DOCUMENT INIT or DOCUMENT DONE

Header (string key, string value)
Adds a header to the document, in the form “key: value”. This
property must be set before BeginDocument is called.

PutHeader (string header)
Adds a header to the document. This property must be set before
BeginDocument is called.

BeginDocument ()
Changes the document status to DOCUMENT INIT. This can be
called just one time per WebDocument.

EndDocument ()
Changes the document status to DOCUMENT DONE. It is
mandatory to call this function for the data to be sent to the user.

230 CHAPTER 9. BASIC I/O

DestroySession ()
Deletes the current session, if UseSessions is set to true. If set to
false, this function throws a ConceptException.

SessionID ()
Returns the current session id as a string, if UseSessions is set to
true. If set to false, this function throws a ConceptException.

operator << (string)
Outputs data to the webdocument

Print (string)
An alias for <<operator

Beside these members, you will also need some static functions defined in
web.service.api for accessing variables.

WebVar (string variable name[, buffer size]) returns variable as a string
or array (if multiple values)
Returns a web variable, looking in cookies, get and post variables. If
buffer size is set, it will return up to buffer size bytes

SessionVar (string variable name) returns session variable value as a
string
Returns a session variable

SetSessionVar (string variable name, string variable value)
Sets a session variable

SessionTimeout (number seconds)
Sets the session timeout in seconds

ServerVar (string variable name)
Gets a web server variable, for example “HTTP USER AGENT”.

CookieVar (string variable name) returns cookie variable value as a
string
Gets a cookie variable by name

SetCookie (string variable name, string value, number days expire, string
path, string domain, string secure)
Sets a cookie variable

9.16. CLASSIC WEB APPLICATION BASICS 231

RemoveCookie (string variable name, string path, string domain, string
secure)

GET ()
Returns an array containing all the GET parameters

POST ()
Returns an array containing all the POST parameters

COOKIE ()
Returns an array containing all the cookies

VARS ()
Returns an array containing all the variables, except the server
variables

HelloWorldHTTP.con

include WebDocument.con

class Main {

Main() {

var doc=new WebDocument();

doc.UseSessions=true;

doc.BeginDocument();

var name = GET()["name"];

if (name)

doc << "Hello $name form a concept application!";

else

doc << "Hello world form a concept application!";

doc.EndDocument();

}

}

After creating this file in your web serve root, it can be accessed (assuming
that the http server runs on th 8080 port):

http://localhost:8080/HelloWorldHTTP.con

Showing “Hello world form a concept application!” in your web browser. If
you add the “name” variable to the request:

232 CHAPTER 9. BASIC I/O

http://localhost:8080/HelloWorldHTTP.con?name=Eduard

You will get “Hello Eduard form a concept application!”.

As said before, is better to avoid generating documents directly from a
concept source file. The correct way to do this is to use XSLT templates.

HelloWorldHTTP2.con

include WebDocument.con

include Serializable.con

import standard.C.io

import standard.lib.xslt2

class CDCollection {

var[] cds;

}

class CD {

var Artist="";

var Album="";

}

class Main {

Main() {

var doc=new WebDocument();

doc.UseSessions=true;

doc.BeginDocument();

var cds = new CDCollection();

var cd = new CD();

cd.Artist = "Nirvana";

cd.Album = "Nevermind";

cds.cds += cd;

cd = new CD();

cd.Artist = "Nirvana";

cd.Album = "In utero";

cds.cds += cd;

var html = XSLTProcess(ToXML(cds), ReadFile("template.xsl"));

var err = XSLTError();

if (err)

9.16. CLASSIC WEB APPLICATION BASICS 233

doc << err;

else

doc << html;

doc.EndDocument();

}

}

ToXML(cds) will generate:

<?xml version="1.0" encoding="UTF-8"?>

<CDCollection>

<cds type="array">

<element index="0" type="CD">

<Artist type="string">Nirvana</Artist>

<Album type="string">Nevermind</Album>

</element>

<element index="1" type="CD">

<Artist type="string">Nirvana</Artist>

<Album type="string">In utero</Album>

</element>

</cds>

</CDCollection>

template.xslt

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:csp="http://www.devronium.com/csp"

extension-element-prefixes="csp">

<xsl:output method="html" indent="yes"/>

<xsl:template match="/">

<html>

<body>

<h2>My CD Collection</h2>

<table border="0">

<tr bgcolor="#E0E0E0">

<th>Title</th>

<th>Artist</th>

</tr>

<xsl:for-each select="CDCollection/cds/element">

<tr>

234 CHAPTER 9. BASIC I/O

<td><xsl:value-of select="Album"/></td>

<td><xsl:value-of select="Artist"/></td>

</tr>

</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

Figure 9.3:
HelloWorldHTTP2.con output

HelloWorldHTTP2.con and template.xslt will produce the following
HTML source:

<html>

<body>

<h2>My CD Collection</h2>

<table border="0">

<tr bgcolor="#E0E0E0">

<th>Title</th>

<th>Artist</th>

</tr>

<tr>

<td>Nevermind</td>

<td>Nirvana</td>

</tr>

<tr>

<td>In utero</td>

<td>Nirvana</td>

</tr>

</table>

</body>

</html>

9.17. INTER-APPLICATION MESSAGE EXCHANGE 235

Visible in a web browser like figure 9.3.

9.17 Inter-application message exchange

Concept Application Server provides an IPC (inter-process
communication) engine enabling applications on the same server to
communicate between them, called InterApp.

Each concept:// application has an APID (APplication ID), uniquely
identifying the application instance and used by the InterApp subsystem
for routing the messages. You can get the APID of the current instance by
calling the GetAPID() static function.

The messages are sent via the SendAPMessage(number target APID,
number message id, string data). Each message has a number
part(message id) and a string part (data). Messages ids with a value of less
than zero are reserved for debugging and framework, and must be avoided.

CApplication has the ShellDebug (delegate) property which is called every
time an InterApp message is received. The function prototype is:

OnInterAppMessage(number SenderAPID, number MSGID, string Data)

A message can be sent to all the instances of the same applications, except
the sending instance, if the target APID parameter is set to -1. This is
useful for notifying data changes in database applications or, for example,
chat or other forms of real-time communication.

Note that this system is available only form concept:// applications. For
http:// applications the system can be made available by setting the
HandleCGIRequests to 1, APIDHost to localhost, CGTITrustedIP to
127.0.0.1 and CGIPort(default 2663) in concept.ini. The APID 1 is
reserved for the Concept Service Manager. The first allocated IP will be 2,
except when Concept Services are disabled.

Concept CLI applications cannot have APIDs because are not handled by
the Concept Application Server. For console applications, GetAPID() will
always return -1.

236 CHAPTER 9. BASIC I/O

If an application receives a message and doesn’t handle it, the message will
be lost when the APID data buffer grows over
MaxInterAppMessageBuffer(defined in concept.ini). The default
MaxInterAppMessageBuffer is 1024 bytes. Messages of size over 1024 bytes
won’t be guaranteed to be sent. Typically a message should send less than
100-200 bytes, for having a guarantee that will be sent. Also, the Concept
Application Server may decide to stop routing messages from a specific
application, if flood is suspected or the messages being sent are too large.

As an example, a chat application will be described, using only the
InterApp system as means of delivering messages between users.

chat.con

include Application.con

include RTextView.con

include REdit.con

include RButton.con

include RVBox.con

include RHBox.con

include RScrolledWindow.con

class MainForm extends RForm {

var textview;

var edit;

var scroll;

MainForm(owner) {

super(owner);

var vbox = new RVBox(this);

vbox.Show();

scroll = new RScrolledWindow(vbox);

scroll.VScrollPolicy = scroll.HScrollPolicy =

POLICY_AUTOMATIC;

scroll.Packing = PACK_EXPAND_WIDGET;

scroll.Show();

textview = new RTextView(scroll);

textview.Wrap = WRAP_WORD;

textview.ReadOnly = true;

textview.Show();

var hbox = new RHBox(vbox);

9.17. INTER-APPLICATION MESSAGE EXCHANGE 237

hbox.Packing = PACK_SHRINK;

hbox.Show();

edit = new REdit(hbox);

edit.Packing = PACK_EXPAND_WIDGET;

// pressing enter triggers SendTextMessage

edit.OnActivate = this.SendTextMessage;

edit.Show();

var button = new RButton(hbox);

button.Caption = "Send";

button.Packing = PACK_SHRINK;

button.OnClicked = this.SendTextMessage;

button.Show();

edit.GrabFocus();

}

SendTextMessage(Sender, EventData) {

// note that edit.Text is copied in a variable

// for optimizing network traffic (each edit.Text

// causes a request to the client)

var text = edit.Text;

// send to all instances

SendAPMessage(null, 1, text);

textview.AddText("sent> $text\n");

scroll.ScrollDown();

edit.Text = "";

}

OnInterAppMessage(SenderAPID, MSGID, Data) {

if (MSGID == 1) {

textview.AddText("received> $Data\n");

scroll.ScrollDown();

}

}

}

class Main {

Main() {

try {

var mainform=new MainForm(null);

var Application=new CApplication(mainform);

238 CHAPTER 9. BASIC I/O

Application.ShellDebug=mainform.OnInterAppMessage;

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

CApplication::Message(Exception, "Uncaught exception",

MESSAGE_ERROR);

}

}

}

This will enable for all users connected to the same application to send
text messages to each other (see figure 9.4).

Figure 9.4:
chat.con output

9.18 String and time functions

standard.lib.str provides a set of easy to use static function for string
manipulation. For a complete list of the string static functions, you should
check the Concept Framework documentation.

A list with most used string functions:

9.18. STRING AND TIME FUNCTIONS 239

string StrReplace (string original string, string what, string replace)
Replaces what with replace in a copy of textitoriginal string and
returns it

number Pos (string original string, string what)
Searches for what in textitoriginal string. If its found, it returns the
substring index in origianl string + 1. If not found, it returns 0. It
uses the Boyer-Moore algorithm to perform a very fast search.

string SubStr (string original string, number start, number len)
Returns the substring starting the start position and having len
characters. If original string end is overpassed, the len parameters
gets automatically shrunken internally.

array StrSplit (string original string, string delimiter,
empty strings=false)
Splits the given original string by delimiter. If the empty strings is
set to true and two consecutive delimiters are encountered, in the
returned array an empty string will be added. Returns an array of
sub strings.

array StrNumberSplit (string original string, string delimiter,
empty strings=false)
Identical with StrSplit but returns instead an array of numbers

string chr (number order)
Returns the character identified by order in ASCII table.

number ord (string character)
Returns the ASCII value for the given character.

string trim (string)
Trims the given string left and right, removing any leading or trailing
spaces, newlines or tabs and returns it.

string ltrim (string)
Trims the given string, removing any leading spaces, newlines or tabs
and returns it.

string rtrim (string)
Trims the given string, removing any trailing spaces, newlines or tabs
and returns it.

240 CHAPTER 9. BASIC I/O

string ToUpper (string)
Returns ASCII string in uppercase

string ToLower (string)
Returns ASCII string in lowercase

string UTF8ToUpper (string)
Returns UTF8 string in uppercase

string UTF8ToLower (string)
Returns UTF8 string in lowercase

number UTF8Length (string)
Returns the length in characters of the UTF8 string.

number calc (string)
Evaluates the arithmetical expression described by string, and
returns the result. For example calc(”1+2+3*4”) will return 15.

import standard.lib.str

[..]

echo StrSplit("This is a test", " ");

[..]

Will split the given string by space character and print:

Array {

[0] => This

[1] => is

[2] => a

[3] => test

}

Concept also supports regular expressions, both POSIX and Perl. See
Concept Framework documentation for standard.lib.regex and
standard.lib.preg.

For example:

import standard.lib.regex

[..]

IsEmailValid(email) {

9.18. STRING AND TIME FUNCTIONS 241

return regex(email, "{1,64}@{1,255}");

}

[..]

Or the Perl-regular expression:

import standard.lib.preg

[..]

IsEmailValid(email) {

return preg(email,

"[A-Za-z0-9_\\.\\-]+@[A-Za-z0-9_\\.\\-]+\.[A-Za-z0-9_\\.\\-]+");

}

[..]

The Concept time functions are just wrappers for the C time functions.
All of the time functions are defined in standard.C.time import library.

import standard.C.time

class Main {

function Main() {

var t=time();

var arr=localtime(t);

var fmt="%d.%m.%y\n";

echo strftime(arr, "%d.%m.%y");

}

}

Will print, for example, for Januar 19, 2014: “19.01.2014”. arr contains
the current time as an array:

Array {

[0,"tm_hour"] => 13

[1,"tm_isdst"] => 0

[2,"tm_mday"] => 19

[3,"tm_min"] => 19

[4,"tm_mon"] => 0

[5,"tm_sec"] => 57

[6,"tm_wday"] => 0

[7,"tm_yday"] => 18

[8,"tm_year"] => 114

}

242 CHAPTER 9. BASIC I/O

See the Concept Framework documentation for a complete list of the APIs.

9.19 Spell check and phonetics

With Concept Framework you can perform spell checks for various
languages. The SpellChecker class, defined in SpellChecker.con, can
provide suggestions for a misspelled word. SpelChecker is the high level
version of standard.lib.hunspell import library, based on Hunspell. Hunspell
is a spell checker and morphological analyzer designed for languages with
rich morphology and complex word compounding and character encoding,
originally designed for the Hungarian language1. It supports many
languages now, including English, German or French. Hunspell is the spell
checker for lots of projects, for example Apple OS X 10.6 or later, Eclipse,
Google Chrome, LibreOffice and OpenOffice, Firefox and Thunderbird.

The SpellChecker class implements the following methods:

string CheckSpell (string str, var misspelled words=null)
Checks the spelling for str, and returns a correction suggestion. If
misspelled words is set, it will contain a list of misspelled words,
separated by comma.

array Check (string word, null if correct=true)
Checks if the given word is correctly spelled. If not, it returns an
array of suggested words. If null if correct is set to false, it will also
return suggestions for correctly spelled words.

SpellChecker (language path)
The constructor. Language path is the path of the .aff and .dic file.
For example, if language path is res/en GB, you should have two
files: res/en GB.aff and res/en GB.dic

static string Suggest (string str, var misspelled words=null)
Can be called only by a succesful call to SpellChecker::Static. Checks
the spelling for str, and returns a correction suggestion. If
misspelled words is set, it will contain a list of misspelled words,
separated by comma.

1http://en.wikipedia.org/wiki/Hunspell, January 30, 2014

9.19. SPELL CHECK AND PHONETICS 243

static SpellChecker Static (language path)
Loads a dictionary (.aff and .dic files), and constructs a static spell
checker, enabling the use of SpellChecker::Suggest member. Returns
the initialized SpellChecker object.

Assuming that you downloaded a set of dictionaries, including for English
(GB), you could try:

1 include SpellChecker.con

2

3 class Main {

4 function Main() {

5 var spell = new SpellChecker("en_GB");

6 echo spell.Check("tes");

7 }

8 }

en GB.aff and en GB.dic must be on the application’s root for this
example to work. The previous example will output:

Array {

[0] => set

[1] => yes

[2] => tea

[3] => tees

[4] => ties

[5] => teas

[6] => ates

[7] => tens

[8] => test

[9] => toes

[10] => est

[11] => tee

[12] => ten

[13] => mes

[14] => bes

}

You could also use the RTextView with SpellChecker. The following
snippet underlines the misspelled words by using. SpellExample.con

1 include Application.con

244 CHAPTER 9. BASIC I/O

2 include RTextView.con

3 include SpellChecker.con

4

5 class MyForm extends RForm {

6 MyForm(Owner) {

7 super(Owner);

8 var textview = new RTextView(this);

9 textview.Text = "The user can just type the text here";

10 textview.Wrap = WRAP_WORD;

11

12 // create the tag

13 var error_tag = textview.CreateStyle("SpellError");

14 error_tag.Underline = UNDERLINE_ERROR;

15

16 SpellChecker::Static("en_GB");

17 textview.OnKeyRelease = this.OnTextEntered;

18 textview.Show();

19 }

20

21 OnTextEntered(Sender, EventData) {

22 var text = Sender.Text;

23

24 SpellChecker::Suggest(text, var ErrWords);

25 if (ErrWords)

26 Sender.MarkWords(ErrWords, "SpellError");

27 }

28 }

29

30 class Main {

31 Main() {

32 try {

33 var Application = new CApplication(new MyForm(null));

34 Application.Init();

35 Application.Run();

36 Application.Done();

37 } catch (var Exception) {

38 echo Exception;

39 }

40 }

41 }

The output is shown in figure 9.5.

The standard.lib.languagedetector, will auto-detect the language the text is

9.19. SPELL CHECK AND PHONETICS 245

Figure 9.5: SpellExample.con output

written in. Based on the language detection result, the specific dictionary
could be loaded.

string DetectLanguage(string phrase[, var secondary_languages, var

is_reliable]);

The DetectLanguage static function will return the most probable language
as a string, in which the phrase parameter is written in. If
secondary languages is set, it will contain an array of strings, containing
the detected languages, in order of probabilities. If is reliable is set, it will
be set to true, if the language detector is sure about the returned result.

1 import standard.lib.languagedetector

2

3 class Main {

4 function Main() {

5 var lang = DetectLanguage("Do you speak italian?", var

langs, var is_reliable);

6 if (is_reliable)

7 echo "Almost sure is $lang\n";

8 else

9 echo "It may be $lang\n";

10 echo langs;

11 }

12 }

The output:

It may be ENGLISH

Array {

[0] => ENGLISH

[1] => ITALIAN

}

For some languages, Soundex, Metaphone and DoubleMetaphone may be

246 CHAPTER 9. BASIC I/O

used for searching or processing misspelled words. These functions are
defined in standard.lib.str import library.

Soundex is a phonetic algorithm for indexing names by sound, as
pronounced in English. The goal is for homophones to be encoded to the
same representation so that they can be matched despite minor differences
in spelling.

Metaphone is a phonetic algorithm, published by Lawrence Philips in 1990,
for indexing words by their English pronunciation. It fundamentally
improves on the Soundex algorithm by using information about variations
and inconsistencies in English spelling and pronunciation to produce a
more accurate encoding, which does a better job of matching words and
names which sound similar. As with Soundex, similar sounding words
should share the same keys. The Double Metaphone phonetic encoding
algorithm is the second generation of this algorithm. It makes a number of
fundamental design improvements over the original Metaphone algorithm.
It is called “Double” because it can return both a primary and a secondary
code for a string; this accounts for some ambiguous cases as well as for
multiple variants of surnames with common ancestry. For example,
encoding the name ”Smith” yields a primary code of SM0 and a secondary
code of XMT, while the name ”Schmidt” yields a primary code of XMT
and a secondary code of SMTboth have XMT in common2.

Prototypes:

string Soundex(string word);

string Metaphone(string word);

string DoubleMetaphone(string word[, var codes]);

Each of these function return a phonetic representation of the given word.

1 import standard.lib.str

2

3 class Main {

4 function Main() {

5 echo DoubleMetaphone("metallica");

6 echo "\n";

7 echo DoubleMetaphone("metalica");

8 echo "\n";

2http://en.wikipedia.org/wiki/Metaphone, on January 30, 2014

9.20. MATH 247

9 echo DoubleMetaphone("mitallik");

10 echo "\n";

11 }

12 }

The output:

MTLK

MTLK

MTLK

For every call, for different words, but with identical pronunciation, the
same output is generated (MTLK).

9.20 Math

The standard.C.math import library maps most of the C’s math functions.
These are just wrappers to the C functions. The math functions are:

number abs (number x)
Returns the absolute value of x.

number acos (number x)
Returns the principal arc cosine of x, in the interval [0,π] radians.

number asin (number x)
Returns the principal arc sine of x, in the interval [0,π] radians.

number atan (number x)
Returns the principal arc tangent of x, in the interval [-π2 ,+π

2]
radians.

number ceil (number x)
Returns the smallest integral value that is not less than x (as a
floating-point value).

number cos (number x)
Returns the cosine of x in radians. x is the value representing an
angle expressed in radians.

248 CHAPTER 9. BASIC I/O

number exp (number x)
Returns the exponential value of x.

number fabs (number x)
Returns the absolute value of x (|x|).

number floor (number x)
Returns the value of x rounded downward (as a floating-point value).

number fmod (number numer, number denom)
Returns the remainder of dividing numer, value of the quotient
numerator to denom, value of the quotient denominator.

number labs (number x)
Returns the absolute value of parameter x. It is the integer version of
abs.

number ldexp (number x, number exponent)
The function returns: x · 2exp

number log (number x)
Returns the natural logarithm of x. If the argument is negative, a
domain error occurs.

number log10 (number x)
Returns the common logarithm of x. If the argument is negative, a
domain error occurs.

number rand ()
Returns a random number, in the interval [0..32767].

number pow (number base, number exponent)
Returns the result of raising base to the power exponent.

number sin (number x)
Sine of x radians. x is the value representing an angle expressed in
radians. One radian is equivalent to 180

π degrees.

number sqrt (number x)
Returns the square root of x. Note that x must be a positive value.

srand (number seed)
The pseudo-random number generator is initialized using the
argument passed as seed.

9.20. MATH 249

number tan (number x)
Tangent of x radians.

number round (number x, number decimals)
Rounds x to given decimals.

string number format (number x, number decimals, string
decimal separator, string thousands separator)
Formats a floating point number to given decimals using the given
decimal separator and thousand separator, returning the result as a
string.

standard.C.math also defines the following constants: M E (e), M LOG2E,
M LOG10E, M LN2, M LN10, M PI (π), M PI 2 (π2), M PI 4 (π4), M 1 PI

(1
π), M 2 PI, M 2 SQRTPI, M SQRT2 (

√
2), M SQRT1 2 (1√

2
).

Avoid using rand and srand, especially in cryptographic functions. For
generating pseudo-random numbers, the use of functions implemented in
standard.math.rand is recommended.

RandomSeed (number seed)
Initializes the random number generator using the given seed
(integer).

number RandomInteger (number min, number max)
Returns a random integer between in the interval [min..max].

number RandomIntegerX (number min, number max)
Returns a random integer between in the interval [min..max]. Similar
with RandomInteger, but exact. The frequencies of all output values
are exactly the same for an infinitely long sequence (Only relevant
for extremely long sequences).

number RandomBit ()
Returns a random bit (0 or 1)

number RandomFloat ()
Returns a random floating point number, in the interval [0..1].

For really big numbers, you may use the standard.math.gmp, based on the
GNU MP library. See the Concept Framework documentation for a
complete list of functions.

250 CHAPTER 9. BASIC I/O

RandomExmaple.con

1 import standard.math.rand

2

3 class Main {

4 function Main() {

5 // print 10 random integers

6 for (var i=0;i<10;i++) {

7 echo RandomInteger(0,100);

8 echo "\n";

9 }

10 // print 10 random bits

11 for (i=0;i<10;i++) {

12 echo RandomBit();

13 echo "\n";

14 }

15 // print 10 random real numbers between 0 and 1

16 for (i=0;i<10;i++) {

17 echo RandomFloat();

18 echo "\n";

19 }

20 // alternate 10 random integers

21 for (i=0;i<10;i++) {

22 echo RandomIntegerX(0,100);

23 echo "\n";

24 }

25 }

26 }

Note that the random seed is automatically initialized by the import
library.

The math functions are straight forward. The only function that outputs a
string is number format.

import standard.C.math

[..]

echo number_format(1123.7891, 2, ".", ",");

[..]

Will otuput 1,123.79.

9.21. SERIAL PORTS 251

9.21 Serial ports

Some hardware uses serial cables for communicating with computers. For
example, low-cost cash registers, medical devices or alarms. The serial
ports are easy to use, by simply opening them as special files. The problem
arises from compatibility between Windows or Unix-like operating
systems. For that, the standard.io.rs232 provides all the necessary APIs.

OpenComport (number port, number baudrate, number bits=8)
Opens a COM port for read/write at the given baud rate, using
given bits (7 or 8). Returns 0 on success, non-zero on failure. Port 0
is COM1 or /dev/ttyS0, port 1 is COM2 or /dev/ttyS1. A maximum
of 16 ports are supported on Windows systems, and 22 on Unix
systems.

PollComport (number port, var outputbuffer, number maxsize)
Read maximum maxsize bytes from the COM port into outputbuffer.
Returns the number of bytes read. This function will block until
some data will be available. On error, will return -1.

SendComport (number port, string buffer)
Sends buffer on the given comport. Returns the number of written
bytes, or a negative value on error.

CloseComport (number port)
Closes the given port.

The example:

1 import standard.io.rs232

2

3 class Main {

4 function Main() {

5 // open COM1 or /dev/ttyS0

6 if (!OpenComport(0, 1200)) {

7 echo "error opening port";

8 return 0;

9 }

10 // read data from the port

11 do {

12 var res = PollComport(0, var buf, 100);

252 CHAPTER 9. BASIC I/O

13 if (res < 0)

14 break;

15 echo buf;

16

17 // send the data back

18 SendComport(0, buf);

19 } while (true);

20 CloseComport(0);

21 }

22 }

Chapter 10

Supported databases

10.1 Database interface

Concept Application Server supports both SQL and NoSQL databases. All
SQL-based divers have similar Concept interfaces, for the programmer to
be able to switch between them without rewriting the code. Every driver
implements 3 classes:

*Connection
Manages the connection with the database server

*DataSet
Handles the data returned by a query

*DataRecord
Used by the dataset to handle column specific data and
transformations

The “*” is replaced by a prefix specific to the database system. For
example, PostgreSQL uses “PQ”, MySQL uses the “My” prefix, SQLite
uses “SL”, FireBird uses “FB” and ODBC uses “ADO” (short for Abstract
Data Objects, not related with Microsoft’s ADO).

*Connection has at least the following members:

253

254 CHAPTER 10. SUPPORTED DATABASES

DriverOpen (string db, string username, string password, string host,
number port, string driver specific=“”, number flags=0)
Opens a connection to the database server. Returns 0/false if failed.

Close ()
Closes the connection

LastError ()
Returns the last error as a string and sets the error flag to 0 (a
second call)

Connection : number property (read-only)
Returns the native connection handle to be used with low-level
functions

Most of the *Connection classes supporting transactions, also implement:

StartTransaction ()
Starts a new transaction

EndTransaction (mode)
Ends the current transaction. Mode may be
TRANSACTION ROLLBACK or TRANSACTION COMMIT

*DataSet has at least the folowing members:

*DataSet (*Connection)
Constructor - creates a new dataset object for the given connection

Columns : property (array of strings)
The columns as an array of strings

Connection : property (*Connection)
Gets or sets the *Connection used

CommandText : string property
Sets the query to be executed without bounded parameters

PreparedQuery : string property
Sets the query to be executed with or without bounded parameters

10.1. DATABASE INTERFACE 255

ExecuteNonQuery ()
Executes a query that produces no results (for example an insert or
update). Returns -1 in case of error.

ExecuteQuery ()
Execute a query that returns a set of data that will be fetched via
FetchForward or First/Next. Returns -1 on error.

AddParameter (string parameter value)
Adds a parameter value used by PreparedQuery.

ClearParameters ()
Resets the parameters

FieldValues : array of *DataRecord, with column names as keys
Provides access to resulting columns

FetchForward ()
Fetches next row and returns true. Returns false if no row is
available.

First ()
Positions the cursor on the first row. Returns false if no data is
available. It’s recommended that you used FetchForward
instead(faster).

Next ()
Fetches next row and returns true. Returns false if no row is
available. It’s recommended that you used FetchForward
instead(faster).

Prev ()
Fetches previous row and returns true. Returns false if no row is
available. This is not supported on all servers and NOT
recommended. A forward-only cursor is significantly faster and easier
on a server.

Last ()
Fetches the last row and returns true. Returns false if no row is
available.

CloseRead (clear parameters=true)
Closes the current result set and clears the memory. Has no effect on
datasets using ExecuteNonQuery.

256 CHAPTER 10. SUPPORTED DATABASES

LastError ()
Returns the last error as a string and sets the error flag to 0 (a
second call)

*DataRecord has at least the folowing members:

ToNumber ()
Returns the column data as a number

ToString ()
Returns the column data as a string, trimming extra spaces for
fixed-size columns

ToBuffer ()
Returns the column data as a string, without trimming extra spaces
for fixed-size columns

Each driver can implement its specific methods, however the previous
classes and members are common in all the engines.

We will define a basic application template to be used in all the database
example, with 2 functions that will be written for each of the supported
database.

database template.con

include Application.con

include RForm.con

include RVBox.con

include RTreeView.con

include RScrolledWindow.con

// include specific database classes

// for example, for MySQL:

// include MyDataBases.con

class MyForm extends RForm {

protected var treeview;

protected var Connection;

MyForm(Owner) {

super(Owner);

10.1. DATABASE INTERFACE 257

var vbox = new RVBox(this);

vbox.Show();

var edit = new REdit(vbox);

edit.Text = "SELECT * FROM students";

edit.Packing = PACK_SHRINK;

edit.OnActivate = this.OnEnterPressed;

edit.Show();

var scroll = new RScrolledWindow(vbox);

scroll.VScrollPolicy = scroll.HScrollPolicy =

POLICY_AUTOMATIC;

scroll.Show();

treeview = new RTreeView(scroll);

treeview.Model = MODEL_LISTVIEW;

treeview.Show();

this.DoConnect();

}

OnEnterPressed(Sender, EventData) {

// ignore extra spaces

var query = trim(Sender.Text);

if (query)

this.DoQuery(query);

}

DoConnect() {

// specific connect data

}

DoQuery(string query) {

// specific dataset data

}

PopulateDatabase() {

// specific dataset data

}

RenderData(dataset) {

var columns = dataset.Columns;

var len = length columns;

treeview.Clear();

treeview.ClearColumns();

258 CHAPTER 10. SUPPORTED DATABASES

for (var i = 0; i < len; i++)

treeview.AddColumn(columns[i]);

while (dataset.FetchForward()) {

var column_count = length dataset.FieldValues;

var item = new [];

for (var j = 0; j < column_count; j++)

item[j] = dataset.FieldValues[j].ToString();

treeview.AddItem(item);

}

}

finalize() {

// close the database connection

if (Connection)

Connection.Close();

}

}

class Main {

function Main() {

try {

var Application=new CApplication(new MyForm(null));

Application.Init();

Application.Run();

Application.Done();

} catch (var Exception) {

echo Exception;

}

}

}

Note that this is not an working example. It is a template to be
customized with every database engine. For every driver example, only the
DoConnect, PopulateDatabase and DoQuery functions will be described,
the rest of the code remaining identical, regardless the used driver.

As a rule, avoid appending string parameters into SQL queries and using
them with CommandText/PreparedQuery. This can create a door for an
attacker to hijack your queries with unpredictable results. The correct way
is to bind parameters by using DataSet.PreparedQuery with
DataSet.AddParameter(parameter value).

10.1. DATABASE INTERFACE 259

When working with dates and timestamps, for all database servers the
values are written and read as a string using the “YYYY-MM-DD”
respectively ”YYYY-MM-DD HH:mm:ss” form, for example ”2014-01-02
15:10:20” will mean January 2nd, 2014, 3:10:20 PM. When performing
inserts or selects on dates and timestamps use this format only.

You may use string strftime(array time, string format), string
strftime2(number since epoch, string format), array strptime(sting
time as string, string format) and number strptime2(sting time as string,
string format) defined in standard.C.time import library to convert from
and to different formats. See Concept Documentation, topic
standard.C.time for more information.

The FieldValue array has keys for each column. You can access a field
value by index or by column name. In the following example, indexes are
used:

while (dataset.FetchForward()) {

var column_count = length dataset.FieldValues;

var item = new [];

for (var j = 0; j < column_count; j++)

item[j] = dataset.FieldValues[j].ToString();

treeview.AddItem(item);

}

Our example must be query independent (the user enters the query in a
text field), but in practice I strongly recommend using field names as keys
instead of indexes, because the code is easier to read and debug.

Assuming that the executed query is: “SELECT id, name,
registration date, descrption FROM student”, the recommended way to do
it is:

while (dataset.FetchForward()) {

var column_count = length dataset.FieldValues;

var item = new [];

item[0] = dataset.FieldValues["id"].ToString();

item[1] = dataset.FieldValues["name"].ToString();

item[3] =

dataset.FieldValues["registration_date"].ToString();

item[4] = dataset.FieldValues["description"].ToString();

treeview.AddItem(item);

260 CHAPTER 10. SUPPORTED DATABASES

}

It is important to choose SQL or NoSQL for the right reasons. Each
database has its pro and cons, as is the case with SQL and NoSQL.

NoSQL databases are great for document-oriented applications. There
they are the stars, but most of them lack transaction support.

All modern databases are relatively fast, so if your query is to slow, avoid
blaming on the database server. Most likely your queries are faulty or
indexes are not created.

10.2 PostgreSQL

PostgreSQL is an object-relational database system that has the features
of traditional proprietary database systems with enhancements to be found
in next-generation DBMS systems. PostgreSQL is free and the complete
source code is available. PostgreSQL is distributed under a license similar
to BSD and MIT. Basically, it allows users to do anything they want with
the code, including reselling binaries without the source code. PostgreSQL
is a “feature-rich, standards-compliant” database.

PostgreSQL is the recommended database server to use with CAS
applications for medium to big data applications.

Every application using the PostgreSQL driver must include
PQDataBases.con The database objects prefix is “PQ”, using the following
classes:

PQConnection
Manages the connection with the database server

PQDataSet
Handles the data returned by a query

PQDataRecord
Used by the dataset to handle column specific data and
transformations

10.2. POSTGRESQL 261

Additionally, it has a specific class called PQFile used for managing blobs.

PQFile has the following members:

PQFile (PQConnection con)
Constructor - creates a PQFile object without creating any data in
the server

Create (var oid = 0, mode = INV READ | INV WRITE)
Creates a new blob/file, setting the oid. Object identifiers (OIDs) are
used internally by PostgreSQL as primary keys for various system
tables.

Open (number oid, number mode=INV READ)
Opens a file/blob. Mode can be INV READ for read-only,
INV WRITE for write-only or a combination of the two.

Seek (number offset, number whence=PGSQL SEEK SET)
Moves the read/write cursor to the given position (offset, in bytes),
using whence as a position flag: PGSQL SEEK SET - beginning of
the file, PGSQL SEEK END - end of file, PGSQL SEEK CUR -
current position. The file must be opened.

Tell ()
Returns the current cursor position, in bytes, from file
start(PGSQL SEEK SET). The file must be opened.

Read (number bytes)
Reads a chunk of data from the file (of bytes size) and returns it as a
string buffer. The file must be opened.

Write (string data)
Writes a chunk of data from to the file. The file must be opened.

Close ()
Closes the PQFile, if opened.

Create a database on the PostgreSQL server called ConceptTestDB. Let’s
consider the example template described in database interface.

First of all, add the include file at the beginning of the file:

include PQDataBases.con

262 CHAPTER 10. SUPPORTED DATABASES

The example template DoConnect function will use the following code:

DoConnect() {

Connection = new PQConnection();

if (!Connection.DriverOpen("ConceptTestDB", "username",

"password", "localhost")) {

CApplication.Message("Error connecting to the database");

Connection = null;

return;

}

// connected !

// populate the table

this.PopulateDatabase();

}

Replace username and password with your database user name and
password.

Run this into your favorite PostgreSQL client or in the psql command line
client, on the ConceptTestDB database.

CREATE TABLE students (

id integer,

name varchar(40),

registration_date timestamp DEFAULT current_timestamp,

description text,

PRIMARY KEY(id)

);

This is called a DDL, short for data definition language.

The PopulateDatabase member function:

protected PopulateDatabase() {

var dataset = new PQDataSet(Connection);

dataset.CommandText = "START TRANSACTION";

dataset.ExecuteNonQuery();

var err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

10.2. POSTGRESQL 263

// delete all records

dataset.CommandText = "DELETE FROM students";

dataset.ExecuteNonQuery();

err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

for (var i=0; i < 10 ; i++) {

var dataset2 = new PQDataSet(Connection);

dataset2.PreparedQuery = "INSERT INTO students(name,

registration_date, description) VALUES (:1, :2, :3)";

// first parameter: name

dataset2.AddParameter("Student name${i+1}");

// a date field

dataset2.AddParameter("2014-01-02 10:00:00");

dataset2.AddParameter("Here you can add notes for

name${i+1}");

dataset2.ExecuteNonQuery();

err = dataset2.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

}

dataset.CommandText = "COMMIT";

dataset.ExecuteNonQuery();

err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

}

The example template DoQuery function will use the following code:

DoQuery(string query) {

var dataset = new PQDataSet(Connection);

dataset.CommandText = query;

dataset.ExecuteQuery();

264 CHAPTER 10. SUPPORTED DATABASES

var err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

this.RenderData(dataset);

}

Note that you must place every INSERT/UPDATE or DELETE statement
in a transaction. Only when you call COMMIT the data changes will be
actually made available.

PostgreSQL is perfect for any kind of data application. It really shines in
concurrent modes, when working with long-lasting transactions. It also
scales nicely, when the database becomes relatively big.

For more information about PostgreSQL syntax, indexes, sequence
generators, procedures and advanced features, check the documentation
available on postgresql.org web page.

10.3 SQLite

SQLite is a software library that implements a self-contained, serverless,
zero-configuration, transactional SQL database engine. SQLite is the most
widely deployed SQL database engine in the world. The source code for
SQLite is in the public domain.

SQLite is great for small to medium CAS applications, due to its light
design.

Every application using the SQLite driver must include SLDataBases.con
The database objects prefix is “SL”, using the following classes:

SLConnection
Manages the connection with the database server

SLDataSet
Handles the data returned by a query

10.3. SQLITE 265

SLDataRecord
Used by the dataset to handle column specific data and
transformations

A SQL database can be created by simply opening the database file. A
database can be also created by the use of the sqlite3 command line utility.

sqlite3 ConceptTestDB

Then you should run the DDL:

CREATE TABLE students (

id integer PRIMARY KEY AUTOINCREMENT,

name varchar(40),

registration_date datetime,

description text

);

SQLite doesn’t use any username or password for data acces, the only
parameter needed for DriverOpen is database name.

Let’s consider the example template described in database interface.

First of all, add the include file at the beginning of the file:

include SLDataBases.con

The example template DoConnect function will use the following code:

DoConnect() {

Connection = new SLConnection();

if (!Connection.DriverOpen("ConceptTestDB")) {

CApplication.Message("Error connecting to the database");

Connection = null;

return;

}

// connected !

// populate the table

this.PopulateDatabase();

}

266 CHAPTER 10. SUPPORTED DATABASES

The PopulateDatabase member function:

protected PopulateDatabase() {

var dataset = new SLDataSet(Connection);

dataset.CommandText = "BEGIN TRANSACTION";

dataset.ExecuteNonQuery();

var err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

// delete all records

dataset.CommandText = "DELETE FROM students";

dataset.ExecuteNonQuery();

err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

for (var i=0; i < 10 ; i++) {

var dataset2 = new SLDataSet(Connection);

dataset2.PreparedQuery = "INSERT INTO students(name,

registration_date, description) VALUES (?, ?, ?)";

// first parameter: name

dataset2.AddParameter("Student name${i+1}");

// a date field

dataset2.AddParameter("2014-01-02 10:00:00");

dataset2.AddParameter("Here you can add notes for

name${i+1}");

dataset2.ExecuteNonQuery();

err = dataset2.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

}

dataset.CommandText = "COMMIT";

dataset.ExecuteNonQuery();

err = dataset.LastError();

if (err) {

10.3. SQLITE 267

CApplication.MessageBox(err, "Error");

return;

}

}

The example template DoQuery function will use the following code:

DoQuery(string query) {

var dataset = new SLDataSet(Connection);

dataset.CommandText = query;

dataset.ExecuteQuery();

var err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

this.RenderData(dataset);

}

Figure 10.1 shows the result.

Figure 10.1:
SQLite sample output

Regardless of the database engine, don’t forget to create indexes to
optimize your WHERE, GROUP BY, and ORDER BY clauses.

Note that by default, SQLite is in auto-commit mode. This means that
you don’t need to issue a BEGIN TRANSACTION/COMMIT for every
INSERT/UPDATE or DELETE statement. However, I recommend you
explicitly use start transaction/commit.

268 CHAPTER 10. SUPPORTED DATABASES

The only limit for creating complex data applications using SQLite is the
locking mechanism. As of version 3.7 (the current release at the time the
book was written), it lacks the support for row-locking. It has however a
kind of table-locking, as a result when locking a row, the entire table will
be locked. For applications using limited concurrency, or short-lasting
transactions, it is the perfect database.

For more information about SQLite syntax, indexes, procedures and
advanced features, check the documentation available on sqlite.org web
page.

10.4 MySQL

MySQL is (as of July 2013) the world’s second most widely used
open-source relational database management system (RDBMS), after
SQLite. The main pro for using MySQL seems to be its popularity and
samples.

I recommend MySQL only for non-transactional or short-lived
transaction-based applications. Although it has transaction support in its
InnoDB engine, it has some problems when working in high concurrency.
It is a great server for classic web applications, but I don’t recommend it
for using in enterprise applications, except if you are a MySQL guru and
know how to deal with it.

Every application using the MySQL driver must include MyDataBases.con
The database objects prefix is “My”, using the following classes:

MyConnection
Manages the connection with the database server

MyDataSet
Handles the data returned by a query

MyDataRecord
Used by the dataset to handle column specific data and
transformations

First of all, add the include file at the beginning of the file:

10.4. MYSQL 269

include MyDataBases.con

The example template DoConnect function will use the following code:

DoConnect() {

Connection = new MyConnection();

if (!Connection.DriverOpen("ConceptTestDB", "username",

"password", "localhost")) {

CApplication.Message("Error connecting to the database");

Connection = null;

return;

}

// connected !

// populate the table

this.PopulateDatabase();

}

Replace username and password with your database user name and
password.

Run this into your favorite MySQL client or in the mysql command line
client, on the ConceptTestDB database.

CREATE TABLE students (

id int NOT NULL AUTO_INCREMENT PRIMARY KEY,

name varchar(40),

registration_date datetime,

description text

) ENGINE = InnoDB;

Note the ENGINE parameter. MySQL uses multiple engines, like
MyISAM and InnoDB. MyISAM lacks transactional support, and I
recommend the use of InnoDB (the default engine for MySQL).

The PopulateDatabase member function:

protected PopulateDatabase() {

var dataset = new MyDataSet(Connection);

dataset.CommandText = "START TRANSACTION";

dataset.ExecuteNonQuery();

270 CHAPTER 10. SUPPORTED DATABASES

var err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

// delete all records

dataset.CommandText = "DELETE FROM students";

dataset.ExecuteNonQuery();

err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

for (var i=0; i < 10 ; i++) {

var dataset2 = new MyDataSet(Connection);

dataset2.PreparedQuery = "INSERT INTO students(name,

registration_date, description) VALUES (?, ?, ?";

// first parameter: name

dataset2.AddParameter("Student name${i+1}");

// a date field

dataset2.AddParameter("2014-01-02 10:00:00");

dataset2.AddParameter("Here you can add notes for

name${i+1}");

dataset2.ExecuteNonQuery();

err = dataset2.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

}

dataset.CommandText = "COMMIT";

dataset.ExecuteNonQuery();

err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

}

The example template DoQuery function will use the following code:

10.5. FIREBIRD 271

DoQuery(string query) {

var dataset = new MyDataSet(Connection);

dataset.CommandText = query;

dataset.ExecuteQuery();

var err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

this.RenderData(dataset);

}

Note that by default, MySQL is in auto-commit mode. This means that
you don’t need to issue a START TRANSACTION/COMMIT for every
INSERT/UPDATE or DELETE statement. However, I recommend you
explicitly use start transaction/commit.

Is difficult to say that server is the better or fastest. Almost always it ends
up to the one best suited for the given task and sometimes, the
programmer personality.

The MySQL driver was the first native driver in the Concept Framework,
being a mature and stable.

10.5 Firebird

Firebird is an open source SQL relational database management system
that runs on Linux, Windows, and a variety of Unix. The database forked
from Borland’s open source edition of InterBase in 2000, but since Firebird
1.5 the code has been largely rewritten.

It is a feature rich environment, suited for all kinds of applications, from
small to complex. It is fun and light weight with fairly good
documentation.

Every application using the Firebird driver must include FBDataBases.con
The database objects prefix is “FB”, using the following classes:

272 CHAPTER 10. SUPPORTED DATABASES

FBConnection
Manages the connection with the database server

FBDataSet
Handles the data returned by a query

FBDataRecord
Used by the dataset to handle column specific data and
transformations

Additionally, the FBConnection class implements two additional methods
(that are found also in the ODBC driver):

StartTransaction (array options = null)
Starts a new transaction and returns the transaction handle, or -1 on
error. options is an array of integer values representing
firebird-specific options. Refer to the Firebird’s isc start transaction
documentation for a list with all the posible values.

EndTransaction (mode, retain=false, transaction handle = null)
Ends the transaction with mode. Mode can be
TRANSACTION ROLLBACK or TRANSACTION COMMIT. You
can provide an explicit transaction handle. If not set, the
EndTransaction will use the last transaction initialized by
StartTransaction.

Note that the driver automatically identifies queries like ”START
TRANSACTION”/”BEGIN TRANSACTION” or ”COMMIT” and
”ROLLBACK” (not case sensitve) and calls StartTransaction respectively,
EndTransaction automatically. This is done for “duck” (see duck typing)
compatibility with the rest of the drivers.

First of all, add the include file at the beginning of the file:

include FBDataBases.con

The example template DoConnect function will use the following code:

DoConnect() {

Connection = new FBConnection();

10.5. FIREBIRD 273

if (!Connection.DriverOpen("/path/to/ConceptTestDB.fdb",

"username", "password", "localhost")) {

CApplication.Message("Error connecting to the database");

Connection = null;

return;

}

// connected !

// populate the table

this.PopulateDatabase();

}

Replace username and password with your Firebird database user name
and password. By default, you can use “SYSDBA” as user name and
“materkey” as password. Instead of using an absolute path for the
database, you could use an alias. Refer to the Firebird documentation for
aliases.conf file specification.

Run this into your favorite Firebird client:

CREATE TABLE students (

id int not null,

name varchar(40),

registration_date datetime,

description blob sub_type text,

constraint pk_students primary key (id)

);

The PopulateDatabase member function:

protected PopulateDatabase() {

Connection.StartTransaction();

var dataset = new FBDataSet(Connection);

var err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

// delete all records

dataset.CommandText = "DELETE FROM students";

dataset.ExecuteNonQuery();

err = dataset.LastError();

274 CHAPTER 10. SUPPORTED DATABASES

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

for (var i=0; i < 10 ; i++) {

var dataset2 = new FBDataSet(Connection);

dataset2.PreparedQuery = "INSERT INTO students(name,

registration_date, description) VALUES (?, ?, ?)";

// first parameter: name

dataset2.AddParameter("Student name${i+1}");

// a date field

dataset2.AddParameter("2014-01-02 10:00:00");

dataset2.AddParameter("Here you can add notes for

name${i+1}");

dataset2.ExecuteNonQuery();

err = dataset2.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

}

Connection.EndTransaction(TRANSACTION_COMMIT);

}

The example template DoQuery function will use the following code:

DoQuery(string query) {

var dataset = new FBDataSet(Connection);

dataset.CommandText = query;

dataset.ExecuteQuery();

var err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

this.RenderData(dataset);

}

10.6. ODBC 275

Note that you must place every INSERT/UPDATE or DELETE statement
in a transaction. Only when you call COMMIT the data changes will be
actually made available.

10.6 ODBC

ODBC (Open Database Connectivity) is a standard programming
language middleware API for accessing database management systems
(DBMS). The designers of ODBC aimed to make it independent of
database systems and operating systems.

Where no native driver is available in the Concept Framework, ODBC is
an alternative way for connecting to any modern database server. For
example, Concept has no native driver for Microsoft SQL Server and
Oracle, but can work with these servers via ODBC. Most modern database
servers have ODBC drivers.

The connection process for ODBC drivers is based on a connection string
or a DSN (Data Source Name).

ODBC classes uses the “ADO” prefix and are defined in DataBases.con
(no prefix).

ADOConnection
Manages the connection with the database server

ADODataSet
Handles the data returned by a query

ADODataRecord
Used by the dataset to handle column specific data and
transformations

As a note, the ADOConnection class doesn’t have a DriverOpen method.
Instead, it uses two alternative methods:

OpenDSN (string dsn, string username=“””, string password=“””)
Opens a connection based on a DSN. It returns 0 if the connection
failed.

276 CHAPTER 10. SUPPORTED DATABASES

Open (string connection string)
Opens a connection based on a connection string. It returns 0 if the
connection failed.

The list of connection strings includes (but not limited to):

MSSQL
Driver={SQL Server};Server=localhost;Database=pubs;Uid=;Pwd=;

Access
Driver={Microsoft Access Driver
(*.mdb)};Dbq=mydatabase.mdb;Uid=;Pwd=;

Oracle
Driver={Microsoft ODBC for
Oracle};Server=OracleServer.world;Uid=;Pwd=;

MySQL
Driver={MySQL ODBC 3.51
Driver};SERVER=data.domain.com;PORT=3306;
DATABASE=myDatabase;USER=myUsername;
PASSWORD=myPassword;OPTION=3;

Firebird
Driver=Firebird/InterBase(r) driver;UID=SYSDBA;
PWD=masterkey;DBNAME=/path/to/database.fdb

Interbase
Driver={Easysoft IB6 ODBC};Server=localhost;
Database=localhost:mydatabase.gdb;Uid=username;Pwd=password;

IBM DB2
Driver={IBM DB2 ODBC DRIVER};Database=myDbName;
hostname=myServerName;port=myPortNum;protocol=TCPIP;
uid=myUserName; pwd=myPwd;

Sysbase 12
Driver={SYBASE ASE ODBC Driver};Srvr=localhost;
Uid=username;Pwd=password

Informix

10.6. ODBC 277

Dsn=”;Driver={INFORMIX 3.30 32 BIT};Host=hostname;
Server=myserver;Service=service-
name;Protocol=olsoctcp;Database=mydb;UID=username;PWD=myPwd;

Mimer SQL
Driver={MIMER};Database=mydb;Uid=myuser;Pwd=mypw;

Paradox 7.x
Provider=MSDASQL.1;Persist Security Info=False;
Mode=Read;Extended
Properties=’DSN=Paradox;DBQ=/path/to/myDb;
DefaultDir=/path/to/myDb;DriverId=538;FIL=Paradox 7.X;
MaxBufferSize=2048;PageTimeout=600;’;Initial
Catalog=/path/to/mydb

Excel
Driver={Microsoft Excel Driver
(*.xls)};DriverId=790;Dbq=/path/to/MyExcel.xls;DefaultDir=/path/to/;

Text
Driver={Microsoft Text Driver (*.txt;
*.csv)};Dbq=/path/to/txtFilesFolder/;Extensions=asc,csv,tab,txt;

DBF/FoxPro
Driver={Microsoft dBASE Driver
(*.dbf)};DriverID=277;Dbq=/path/to/mydb;

Visual FoxPRO(.DBC)
Driver={Microsoft Visual FoxPro
Driver};SourceType=DBC;SourceDB=/path/to/myvfpdb.dbc;
Exclusive=No;NULL=NO;Collate=Machine;
BACKGROUNDFETCH=NO;DELETED=NO

Visual FoxPRO(Free table dir)
Driver={Microsoft Visual FoxPro Driver};SourceType=DBF;
SourceDB=/path/to/myvfpdbfolder;Exclusive=No;Collate=Machine;
NULL=NO;DELETED=NO;BACKGROUNDFETCH=NO;

Pervasive
Driver={Pervasive ODBC Client
Interface};ServerName=srvname;dbq=@dbname;

278 CHAPTER 10. SUPPORTED DATABASES

Some of the driver are available only on the windows version, depending on
the specific ODBC driver cross-platform abilities. It is recommended to
avoid using non-portable drivers. In practice, this will be only used when
importing data from old/deprecated systems.

Note that the used ODBC driver must be installed on the system hosting
Concept Application Server.

Additionally, the ADOConnection class implements two additional
methods:

StartTransaction ()
Starts a new transaction

EndTransaction (mode)
Ends the transaction with mode. Mode can be
TRANSACTION ROLLBACK or TRANSACTION COMMIT

For example, a MySQL connection, using the ODBC driver, can be made
via the MyODBC driver (either 3.51 or 5).

First of all, add the include file at the beginning of the file:

include ADODataBases.con

The example template DoConnect function will use the following code:

DoConnect() {

Connection = new ADOConnection();

if (!Connection.OpenString("Driver={MySQL ODBC 3.51

Driver};SERVER=localhost;PORT=3306;DATABASE=ConceptDBTest;

USER=username;PASSWORD=password;OPTION=3;")) {

CApplication.Message("Error connecting to the database");

Connection = null;

return;

}

this.PopulateDatabase();

}

The PopulateDatabase member function:

10.6. ODBC 279

protected PopulateDatabase() {

Connection.StartTransaction();

var dataset = new ADODataSet(Connection);

// delete all records

dataset.CommandText = "DELETE FROM students";

dataset.ExecuteNonQuery();

err = dataset.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

for (var i=0; i < 10 ; i++) {

var dataset2 = new ADODataSet(Connection);

dataset2.PreparedQuery = "INSERT INTO students(name,

registration_date, description) VALUES (?, ?, ?";

// first parameter: name

dataset2.AddParameter("Student name${i+1}");

// a date field

dataset2.AddParameter("2014-01-02 10:00:00");

dataset2.AddParameter("Here you can add notes for

name${i+1}");

dataset2.ExecuteNonQuery();

err = dataset2.LastError();

if (err) {

CApplication.MessageBox(err, "Error");

return;

}

}

Connection.EndTransaction(TRANSACTION_COMMIT);

}

The ODBC drivers should be used only when no native driver is available.
In practice it is used mostly for data imports from various databases.

280 CHAPTER 10. SUPPORTED DATABASES

10.7 NuoDB

NuoDB is a SQL/ACID compliant distributed database management
system. Different from traditional shared-disk or shared-nothing
architectures, NuoDB is a new distributed, peer-to-peer, asynchronous
approach. It has a distributed object architecture that works in the cloud,
which means that when a new server is added in order to scale-up the
database, the database runs faster. The database scales out without
sharding. The database distributes tasks amongst several processors to
avoid bottlenecks of data. It uses peer-to-peer messaging to route tasks to
nodes, and it is ACID compliant. In short words, NouDB is a NoSQL-style
database system that knows SQL.

NuoDB is the only closed source database system supported natively by
the Concept Application Server.

Every application using the NouDB driver must include NuoDataBases.con
The database objects prefix is “Nuo”, using the following classes:

NuoConnection
Manages the connection with the database server

NuoDataSet
Handles the data returned by a query

NuoDataRecord
Used by the dataset to handle column specific data and
transformations

The DriverOpen function has the following prototype:

DriverOpen(string db, string username="", string password="",

string host="localhost", string schema="hello", create=true)

Also, NuoConnection adds two properties

number property IsolationLevel;

boolean property AutoCommit;

Transactions are managed via:

10.8. MONGODB 281

StartTransaction ()
Starts a new transaction

EndTransaction (mode)
Ends the transaction with mode. Mode can be
TRANSACTION ROLLBACK or TRANSACTION COMMIT

The code is identical with the Firebird version, with the only difference
that the “Nuo” prefix will be used of all objects.

10.8 MongoDB

MongoDB (from “humongous”) is a cross-platform document-oriented
database system. Classified as a NoSQL database, MongoDB eschews the
traditional table-based relational database structure in favor of JSON-like
documents with dynamic schemas (MongoDB calls the format BSON),
making the integration of data in certain types of applications easier and
faster.

MongoDB is able to store native Concept objects, as documents. Instead
of tables (having the same columns for every record), MongoDB uses
collections. Items in a collection can may different fields.

MongoConnection
Manages the connection with the database server

MongoDataSet
Handles the data returned by a query and creates a cursor for
navigating between documents

MongoCursor
Used by the dataset to handle column specific data and
transformations

MongoConnection manages the connection with the MongoDB server. The
most used members are:

282 CHAPTER 10. SUPPORTED DATABASES

DriverOpen (db=””, user=””, password=””, host=”127.0.0.1”,
port=27017)
connects to MongoDB

SetTimeout (number seconds)
sets the operation timeout in seconds

Error ()
returns the connection error as a string

LastError ()
returns last query error

AddUser (string username, string password)
Adds a new user

DropDb (string dbname)
Drops a database

DropCollection (string dbname, string collection, var out=null)
Drops a collection

Eval (string javascript query, keep object types=true)
Evaluates the javascript query string and returns the result

SimpleIndex (string field, flags=0, var out=null)
Ensures that an index for the given field exists.

Index (array fields, flags=0, var out=null)
Ensures that an index for the given fields exists.

Close ()
Closes the current connection

Every MongoDB query is defiend as an array. Assuming that we have a
collection of Test objects, defined by:

class Test {

var Name="Eduard";

var Age=30;

}

10.8. MONGODB 283

The query for returning all Test documents that have Name validating
”/.*eduaD*/i” or Age = 30, sorted by Name descending, and by Age
descending will be:

[’$query’: [’$or’: [["Name": "/.*eduaD*/i"], ["Age": 30]]],

’$orderby’: ["Name": -1, "Age": -1]]

MongoDB uses reserved words, prefixed by “$”. See MongoDB
documentation for better understanding these special keys.

The queries are executed via MongoDataSet. Notable members of
MongoDataSet are:

MongoDataSet (MongoConnection connection, string collection=“”)
Constructor - creates a new MongoDataSet for the given collection

Query : array property
Holds the MongoDB query

MapReduce (string map, string reduce, skip=0, limit=0,
resultCollection=“”, var out=null, keep object types=true)
Map-reduce is a data processing paradigm for condensing large
volumes of data into useful aggregated results. See MongoDB
documentation for more information.

Insert (data, keep object types=true, id field=“ id”)
Insert data as a document into collection, returning the id as a
string. Data must be an object or an array.

Count ()
Counts documents from the collection matching Query

Remove ()
Removes documents from the collection matching Query

Update (object data, update all=true, keep object types=true,
force objects=true)
Updates the data object

Find (fields=null, skip=0, limit=0)
Finds all the objects matching Query and returns a MongoCursor.

284 CHAPTER 10. SUPPORTED DATABASES

FindOne (fields=null, keep object types=true)
Finds and returns the first object matching Query. fields may be an
array specifying the fields to be returned. If fields is null, all the
document properties will be set.

The concept driver will automatically add a “classof()” member to every
documents, if the keep object types is set to true, identifying the object
type. This is useful when retrieving the data, for the driver to reconstruct
a clone of the original object.

The result sets are managed by cursor, handled by the MongoCursor class.
Members of MongoCursor:

FieldValues : array property
keeps the document values

Next (keep object types=true)
Fetches the next object in the cursor

FetchForward ()
An alias to Next()

Close ()
Closes the cursor

MongoExample.con

#!/usr/local/bin/concept

include MongoDataBase.con

class Test {

var Name="Eduard";

var Age=30;

var[] data;

}

class Main {

function Main() {

try {

var mongo=new MongoConnection();

if (mongo.Connect("tutorial")) {

var[] arr;

10.8. MONGODB 285

for (var i=0;i<10;i++) {

var t=new Test();

t.Age=i;

t.Name+=" "+i;

t.data=[1,2,3,4,5,"arraytest",[6,7,8],10];

arr[i]=t;

}

var dataset=new MongoDataSet(mongo,"people");

dataset.Insert(arr);

dataset.Query=[’Age’: 9];

var res=dataset.Find();

if (res) {

while (res.Next()) {

echo res.FieldValues.Name+":\n";

echo res.FieldValues.data;

}

}

echo "\nElements: "+dataset.Count()+"\n";

}

mongo.Close();

} catch (var exc) {

echo exc;

}

}

}

Outputs:

Eduard 9:

Array {

[0,"0"] => 1

[1,"1"] => 2

[2,"2"] => 3

[3,"3"] => 4

[4,"4"] => 5

[5,"5"] => arraytest

[6,"6"] =>

Array {

[0,"0"] => 6

[1,"1"] => 7

[2,"2"] => 8

}

286 CHAPTER 10. SUPPORTED DATABASES

[7,"7"] => 10

}

Elements: 1

Remember to create indexes by using MongoConnection.Index or
MongoConnection.SimpleIndex before you use the $orderby flags.

MongoDB is a great server when used wisely. MongoDB is great for
document-based data application, but don’t forget that it lacks
transactional support. For application with fixed data, could be great, but
for intense writes and concurrent updates will not be safe, unless
additional code will be added in the middle-ware, controlling the updates.
As a conclusion, don’t choose MongoDB because is fast, but choose it
because is right for your problem.

10.9 dBase files

The dBase .dbf files are still used in a variety of (old) systems. Concept
Frameworks offers basic support for reading and writing dbf files, using the
standard.db.dbase import library. The support is limited, because dbf files
are not meant to be used as a base for a newly created application. The
API’s are there for helping the data import and export from and to old
systems.

ReadDBF.con

#!/usr/local/bin/concept

import standard.db.dbase

class Main {

function GetDB(string name) {

var handle=DBFOpen(name, false);

if (!handle)

throw "Invalid DBF file";

var info=DBFInfo(handle);

var fields=info["fieldcount"];

var count=info["recordcount"];

var[] res;

10.9. DBASE FILES 287

var[] field_names;

for (var j=0;j<fields;j++) {

var field_name=DBFFieldInfo(handle, j)["name"];

field_names[field_name]=field_name;

}

for (var i=0;i<count;i++) {

DBFMove(handle, i);

var line=new [];

res[i]=line;

for (j=0;j<fields;j++) {

line[field_names[j]]=DBFGet(handle, j);

}

}

var err=DBFLastErrorString(handle);

if (err)

throw err;

DBFClose(handle);

return res;

}

function Main() {

echo GetDB("TEST.DBF");

}

}

The GetDB function will return a matrix containing all the records in the
.dbf. Every line in the matrix will represent one row from the .dbf file.
Every row array element will have as key the column name.

DBF function prototypes:

dbhandle DBFOpen (string dbfname, boolean editable=false,
char conversion=ENUM dbf charconv oem host,
table name=dbfname)
Opens a dbf file

DBFClose (dbhandle)
Closes the dbf file

bool DBFMove (dbhandle, number rowindex)

288 CHAPTER 10. SUPPORTED DATABASES

Moves the cursor in the dbf to the give rowindex. Returns true on
success, false if no more rows are available.

bool DBFDelete (dbhandle, number rowindex)
Deletes the row on the given position (0 is first). Returns true on
success.

bool DBFIsDeleted (dbhandle, number rowindex)
Checks if the row on the given index is deleted. Returns true on
success.

bool DBFAddRecord (dbhandle)
Adds a new record at the end of the dbf. Returns true on success.

bool DBFInsertRecord (dbhandle, number rowindex)
Inserts a new record at the on the given row index. Returns true on
success.

number DBFFindField (dbhandle, string fieldname)
Returns the index of the given field, or -1 if not found

number DBFLastError (dbhandle)
Returns the last error code

string DBFLastErrorString (dbhandle)
Returns the last error as a human-readable string

array DBFInfo (dbhandle)
Returns the dbf meta info as a key-value array. The keys are:
version, flags, fieldcount, recordcount, lastupdate, flags, memo,
editable, modified, tablename and format.

array DBFFieldInfo (dbhandle, number column index)
Returns the field meta info as a key-value array. The keys are: name,
type, length and decimals.

string DBFGet (dbhandle, number column index)
Gets the value for the current row and the given column index as a
string.

string DBFGetName (dbhandle, string column name)
Gets the value for the current row and the given column name as a
string.

10.10. MEMCACHED 289

bool DBFUpdate (dbhandle, number column index, string new value)
Updates the column index for the current row to new value. Returns
true on success.

bool DBFUpdateName (dbhandle, string column name, string
new value)
Updates the column name for the current row to new value. Returns
true on success.

bool DBFNull (dbhandle, number column index)
Returns true if the column on the given index is null.

bool DBFNullName (dbhandle, string column name)
Returns true if the column name is null.

The add operation is relatively simple:

var handle=DBFOpen(name, true);

DBFAddRecord(handle);

DBFUpdateName(handle, "FIELD_NAME", "Value");

DBFUpdateName(handle, "VALUE", "1.00");

DBFClose(handle);

Avoid basing your application on dbf files, being a deprecated system. If
light-weight is a must, SQLite should be a better solution.

10.10 Memcached

Memcached is a general-purpose distributed memory caching system. The
system uses a clientserver architecture. The servers maintain a keyvalue
associative array; the clients populate this array and query it. Keys are up
to 250 bytes long and values can be at most 1 megabyte in size. It’s not
actually a database, is a very fast key-value store.

When dealing with large datasets, only a fraction of the data will be
frequently requested by the users. Memcached enables the application to
cache the data, avoiding the same query to be sent twice in a short interval
to the database server. When a user requests some complex data, the
database server will generate it, consuming CPU power and returning the

290 CHAPTER 10. SUPPORTED DATABASES

data to the user. When using memcached, when the second user requests
the same data before the cache expiring, the database server won’t be
queried.

The memcached client is managed by the MemCached class, defined in
MemCached.con.

Notable members:

AddServer (string host=”localhost”, number port=11211)
Adds a server to the server list

Timeout
Cache timeout, in seconds. When set to 0 (default), it will never
expire.

Add (string key, string data, timeout=-1, flags = 0)
Adds the value for the given key

Set (string key, string data, timeout=-1, flags = 0)
Sets the value for the given key

Get (string key)
Returns the value for the given key

operator[](string key)
An alias for Get(key).

Delete (string key, timeout=-1)
Deletes the given key

SetByKey (string masterkey, string key, string data, timeout=-1,
flags=0)
Sets the value for the given key and masterkey.

GetByKey (string masterkey, string key)
Returns the value for the given key and masterkey.

DeleteByKey (string masterkey, string key, timeout=-1)
Deletes the given key for the give master key

MemCachedExample.con

10.10. MEMCACHED 291

#!/usr/local/bin/concept

include MemCached.con

include Serializable.con

import standard.lib.cripto

class Student {

var Name = "Eduard";

var Notes = "Some notes";

}

class Main {

var mem;

CacheCheck(key) {

// using md5 hashes instead of keys, for caching

// complex SQL queries (> 240 characters in length)

var hash = md5(key);

try {

var xml = mem[hash];

if (xml)

return UnSerialize::Unserialize(xml, true);

} catch (var exc) {

// non-existing key

return null;

}

}

ExecuteSQL(query) {

// We will assume that this function executed

// the given query and returned some data

var student = new Student();

// cache the student data as xml

mem.Set(md5(query), student.Serialize(""));

return student;

}

Query(string query) {

var val = CacheCheck(query);

if (!val) {

val = ExecuteSQL(query);

echo "Returned from the SQL server\n";

} else

echo "Returned from Memcached\n";

return val;

292 CHAPTER 10. SUPPORTED DATABASES

}

Main() {

mem = new MemCached();

// one hour cache time

mem.Timeout = 3600;

mem.AddServer();

echo Query("select * from some_table where id=10");

}

}

On the first run, the program will output:

Returned from the SQL server

Student

On the second run, the program will output:

Returned from Memcached

Student

It is not mandatory to use md5 as a key. You could use plain-text strings,
but in our case, a query can have more than 240 characters (the key limit
for memcached).

For a complete list of members for MemCached, check the Concept
Framework documentation.

10.11 Natural searches with Xapian

Xapian is a highly adaptable toolkit which allows developers to easily add
advanced indexing and search facilities to their own applications. It
supports the Probabilistic Information Retrieval model and also supports a
rich set of boolean query operators.

Applications are only as good as their search is. Xapian allows the user to
search for data using natural language. It uses Okapi BM25, a ranking
function used by search engines to rank matching documents according to

10.11. NATURAL SEARCHES WITH XAPIAN 293

their relevance to a given search query.

The Concept Xapian APIs are using the same classes and prototypes as
the standard Xapian library. The Xapian classes are defined in Xapian.con.

The Xapian example has two command line programs: an indexer, a
program that will index the data, and a searcher.

DataIndexer.con

#!/usr/local/bin/concept

include Xapian.con

import standard.lang.cli

import standard.C.io

import standard.lib.str

class Main {

function Main() {

try {

var arg=CLArg();

if (length arg != 1) {

echo "Usage: DataIndexer.con inputfile";

return -1;

}

// Open the database for update, creating a new database

if necessary.

var db=new XapianWritableDatabase("XapianTest",

DB_CREATE_OR_OPEN);

var indexer=new XapianTermGenerator();

var stemmer=new XapianStem("english");

indexer.set_stemmer(stemmer);

var content=ReadFile(arg[0]);

var doc=new XapianDocument();

doc.set_data(content);

indexer.set_document(doc);

indexer.index_text(content);

db.add_document(doc);

} catch (var exc) {

echo exc;

}

}

}

294 CHAPTER 10. SUPPORTED DATABASES

The search will use the database created by the indexer to perform the full
text search:

SearchData.con

#!/usr/local/bin/concept

include Xapian.con

import standard.lang.cli

import standard.C.io

import standard.lib.str

class Main {

function Main() {

try {

var arg=CLArg();

if (length arg != 1) {

echo "Usage: SearchData.con query";

return -1;

}

var db=new XapianDatabase("XapianTest");

var enquire=new XapianEnquire(db);

var qp=new XapianQueryParser();

var stemmer=new XapianStem("english");

qp.set_database(db);

qp.set_stemming_strategy(STEM_SOME);

var query=qp.parse_query(arg[0]);

echo "Parsed query is: "+query.get_description() +"\n";

echo "Do you mean

’"+db.get_spelling_suggestion(arg[1],2)+"’ ?\n";

enquire.set_query(query);

var matches=enquire.get_mset(0,10);

echo "" + matches.get_matches_estimated() + " result(s)

found.\n";

echo "Matches 1-" + matches.size() + ":\n";

for (var i=matches.begin(); i!=matches.end(); i++) {

echo ""+ (i.get_rank() + 1) + ": " + i.get_percent()

10.11. NATURAL SEARCHES WITH XAPIAN 295

+ "% docid=" + i.get_value();

echo " ["+i.get_document().get_data()+"]\n\n";

}

} catch (var exc) {

echo exc;

}

}

}

After running:

DataIndexer.con SnowWhite.txt

DataIndexer.con SleepingBeauty.txt

The XapianTest database contains the two files. Then, we can query the
database:

SearchData.con "A tale with a queen and a mirror"

The output:

Parsed query is: Xapian::Query((a:(pos=1) OR tale:(pos=2) OR

with:(pos=3) OR a:(pos=4) OR queen:(pos=5) OR and:(pos=6) OR

a:(pos=7) OR mirror:(pos=8)))

Do you mean ’’ ?

2 result(s) found.

Matches 1-2:

1: 87% docid=1 [At the beginning of the story, a queen sits sewing

at ..]

2: 48% docid=2 [At the christening of a king and queen’s

long-wished-for ..]

The first result refers to Snow White, the second one, Sleeping Beauty.

If the search query is changed to:

SearchData.con "A tale with a princess and a wicked fairy"

The output:

296 CHAPTER 10. SUPPORTED DATABASES

Parsed query is: Xapian::Query((a:(pos=1) OR tale:(pos=2) OR

with:(pos=3) OR a:(pos=4) OR princess:(pos=5) OR and:(pos=6) OR

a:(pos=7) OR wicked:(pos=8) OR fairy:(pos=9)))

Do you mean ’’ ?

2 result(s) found.

Matches 1-2:

1: 88% docid=2 [At the christening of a king and queen’s

long-wished-for ..]

2: 35% docid=1 [At the beginning of the story, a queen sits sewing

at ..]

Note the reversed order of the results. The first result refers to Sleeping
Beauty, the second one Snow White.

Xapian performs extremely fast searches, using natural language. The
results in the above example are sorted by relevance.

This kind of full text search is not possible via simple SQL queries. Using
SQL databases with Memcached and Xapin can have a positive impact on
the usability and user experience.

For a complete reference to the Xapin classes, check Concept Framework
documentation and visit xapian.org website.

Chapter 11

Sockets and networking

Network sockets are endpoints of inter-process communication flows across
networks, for example the Internet.

Concept supports 4 types of sockets: TCP/IP, UDP, Unix sockets and
Bluetooth sockets. Note that Unix sockets are emulated using named pipes
on Windows. In addition to plain sockets, Concept Framework also
supports SSLv2, v3 and TLS sockets.

The socket low-level APIs are defined in standard.net.socket import
library. Concept Framework supports both IPv4 and IPv6, on the same
APIs. No changes are necessary to the code for the use of IPv6.

The next section will describe only high-level interfaces. For the low-level
APIs, check the Concept Framework documentation, standard.lib.socket in
the static library section.

11.1 TCP/IP sockets

TCP, short for Transmission Control Protocol, provides reliable, ordered,
error-checked delivery of a stream of octets between programs running on
computers connected to a local area network, intranet or the public
Internet. It basically guarantees that the data was received by the host, or
the connection is lost.

297

298 CHAPTER 11. SOCKETS AND NETWORKING

For establishing a TCP connection, a client socket must connect to a
server listening and accepting connections on a given port. The entire
process is handled by the TCPSocket class defined in TCPSocket.con.

TCPSocket members:

TCPSocket (number sockdescriptor=-1, number is ipv6=false)
Constructor, initializes a TCPSocket. sockdescriptor is the socket
descriptor (-1 if this is a new socket). For IPv6 sockets, the is ipv6
flag must be set to true.

Connect (string host, number port)
Used in client sockets, connects the server at host:port. Returns true
if succeeded, false if failed.

Listen (number port, number maxconnections = 0xFF, interface=“””)
Used in server sockets, listens on the given port and interface. If
interface is not set, will listen on all available interfaces.
maxconnections specifies the maximum concurrent connections.
Returns 0 if succeeded.

Accept (return static socket=false)
Waits for a connection on a server socket. Returns a TCPSocket
object if return static socket is false, or a socket file descriptor as a
number otherwise.

Close ()
Closes the socket

Read (max size=0xFFFF)
Reads at most max size bytes and returns the read buffer. In case of
error, it throws an error string.

Write (string buffer)
Sends buffer on the socket. Returns the number of bytes sent. In
case of error, it throws an error string.

SetOption (number level, number option, number val)
Sets an option for socket. level can be SOL SOCKET,
IPPROTO TCP. option is a socket option 1 and val the new value.
Returns 0 on success, -1 on error.

1Available socket options are (cross-platform): SO DEBUG, SO ACCEPTCONN,

11.1. TCP/IP SOCKETS 299

GetOption (number level, number option, var val)
Gets an option for socket. level can be SOL SOCKET,
IPPROTO TCP. option is a socket option (see bellow). Returns 0 on
success and sets the val to the value, -1 on error.

Ipv6 : boolean read-only property
Returns true if socket uses IPv6.

HasData : boolean property
Returns true if data can be read, or a connection event occurred.

Info : array property
Returns an array containing the IP and the port used by the current
socket. If the socket is invalid, it will return an empty array.

Socket : number property
Returns the socket file descriptor for use with the low-level APIs

Error : number property
Returns the error code of the last socket operation

Every client socket must first make a successfully call to Connect in order
to perform Read or Write operations.

For the socket server you cannot call Read or Write directly. The function
call order is: Listen, client socket = Accept(), client socket.Read and/or
client socket.Write. A call to Listen will fail, if another server program
running on the same machine, listens on the same port(TCP). Note that
two different programs can use the same port if the use different protocols
(one UDP and another TCP).

Note that there is no guarantee that a call to Write will send the entire
data buffer. It is important to analyze the result of the Write (the amount
of bytes written), and then call Write again for the remaining buffer. This
may happen also with Read, that may return less that the max size, and a
second call to Read may be needed. Due to socket send/receive buffer size,

SO REUSEADDR, SO KEEPALIVE, SO DONTROUTE, SO BROADCAST,
SO LINGER, SO OOBINLINE, SO SNDBUF, SO RCVBUF, SO SNDLOWAT,
SO RCVLOWAT, SO SNDTIMEO, SO RCVTIMEO, SO ERROR, SO TYPE,
TCP NODELAY, IP TOS and IP TTL. Check the standard C socket documenta-
tion for finding out what every options does. In practice, you will rarely use them.

300 CHAPTER 11. SOCKETS AND NETWORKING

a big buffer written on the socket, may be actually split in multiple
network packets.

A minimal TCP server:

1 include TCPSocket.con

2

3 class Main {

4 Main() {

5 var t = new TCPSocket();

6 if (t.Listen(2000)) {

7 echo "Error in listen\n";

8 return -1;

9 }

10

11

12 while (true) {

13 try {

14 var client=t.Accept();

15 if (!client)

16 break;

17

18 echo client.Read();

19 client.Write("Hello client!");

20 client.Close();

21 } catch (var exc) {

22 echo exc;

23 break;

24 }

25 }

26 t.Close();

27 }

28 }

And a minimal TCP client:

1 include TCPSocket.con

2

3 class Main {

4 Main() {

5 try {

6 var t=new TCPSocket();

7 if (!t.Connect("localhost", 2000)) {

8 echo "Error connecting to localhost";

11.1. TCP/IP SOCKETS 301

9 return -1;

10 }

11 // send data to the server

12 t.Write("Hello Server!");

13 // wait data from the server

14 echo t.Read();

15 t.Close();

16 } catch (var exc) {

17 echo exc;

18 return -1;

19 }

20 return 0;

21 }

22 }

The server should be run first, to wait for a new connection. Then, in a
separate shell, run the client.

The server will show “Hello Server!” after the client connects and sends the
data, and the client will print “Hello Client!” (received from the server).

In practice, the server will create a thread for every new connection,
immediately after calling Accept.

When multiple network interfaces are available on a server, a socket may
need to listen to a specific interface (see the interface parameter from the
Listen member). A list containing all the available network interfaces can
be obtained by calling:

array ListInterfaces();

The function will return an array of key-value arrays, having ip, mask,
mac, gateway, adapter, description, flags and type as keys. On error it will
return an empty array. This means that no network interfaces are available
or some error occurred (you may want to check errno() for an error code).

A minimal interface query will look like:

1 import standard.net.socket

2

3 class Main {

4 Main() {

302 CHAPTER 11. SOCKETS AND NETWORKING

5 echo ListInterfaces();

6 }

7 }

The output could look like:

Array {

[0] =>

Array {

[0,"ip"] => 192.168.2.110

[1,"mask"] => 255.255.255.0

[2,"mac"] => 00:1C:D2:18:25:91

[3,"gateway"] => 192.168.2.1

[4,"adapter"] => {D882E90D-F8E8-429C-AAEB-A318943F26D7}

[5,"description"] => Marvell Yukon 88E8056 PCI-E Gigabit

Ethernet Controller

[6,"flags"] => 1

[7,"type"] => 6

}

[1] =>

Array {

[0,"ip"] => 169.254.180.206

[1,"mask"] => 255.255.0.0

[2,"mac"] => 00:50:56:C0:00:01

[3,"gateway"] => 0.0.0.0

[4,"adapter"] => {1E092817-81D3-4CA1-9FDC-AA5850AACA8C}

[5,"description"] => VMware Virtual Ethernet Adapter for

VMnet1

[6,"flags"] => 0

[7,"type"] => 6

}

}

Note that flags and type are operating system-dependent and should be
ignored. The ip value may be used with Listen, forcing the server to use
the given interface.

For example, if the 6th line of the server socket example will be replaced
with:

if (t.Listen(2000, "192.168.2.110")) {

11.2. UDP SOCKETS 303

The server will listen for connections request coming only on the network
interface having the 192.168.2.110 IP.

Note that IPs are not limited to IPv4. You could also listen on an
IPv6-enabled interface.

11.2 UDP sockets

UDP, short for User Datagram Protocol enables two programs to send
messages, called datagrams, over a network, without prior communications
to set up special transmission channels or data paths. It has no guarantee
that a datagrams will arrive orderly, or arrive at all.

UDP sockets are great for real-time applications, like VoIP or IpTV, where
error checking is not necessary.

The UDPSocket class, defined in UDPSocket.con manages the datagrams
send between sockets. The server socket must call Bind for the given port.

UDPSocket members:

UDPSocket (number is ipv6=false)
Constructor, initializes an UDPSocket. For IPv6 sockets, the is ipv6
flag must be set to true.

Bind (number port, interface=“””)
Used in server sockets, bind the socket to the given port and
interface. If interface is not set, all available interfaces will accept
packets. Returns 0 if succeeded.

Close ()
Closes the socket

Read (var udphost=null, var udpport=null, max size=0xFFFF)
Reads at most max size bytes and returns the read buffer. On
success, sets the udphost and the udpport to the sender host,
respectively port. In case of error, it throws an error string.

Write (string buffer, string udphost, number port)
Sends buffer on the socket to the given udphost and port. Returns
the number of bytes sent. In case of error, it throws an error string.

304 CHAPTER 11. SOCKETS AND NETWORKING

SetOption (number level, number option, number val)
Sets an option for socket. level may be SOL SOCKET. option is a
socket option (see TCP/IP options) and val the new value. Returns
0 on success, -1 on error.

GetOption (number level, number option, var val)
Gets an option for socket. level may be SOL SOCKET. option is a
socket option (see bellow). Returns 0 on success and sets the val to
the value, -1 on error.

Ipv6 : boolean read-only property
Returns true if socket uses IPv6.

HasData : boolean property
Returns true if data can be read, or a connection event occurred.

Info : array property
Returns an array containing the IP and the port used by the current
socket. If the socket is invalid, it will return an empty array.

Socket : number property
Returns the socket file descriptor for use with the low-level APIs

Error : number property
Returns the error code of the last socket operation

Note that there is no guarantee that a successfully call to Write will
actually deliver the data to the remove host.

A minimal UDP server:

1 include UDPSocket.con

2

3 class Main {

4 Main() {

5 var t = new UDPSocket();

6 if (t.Bind(2000)) {

7 echo "Error in bind\n";

8 return -1;

9 }

10

11

12 while (true) {

13 try {

11.2. UDP SOCKETS 305

14 // we need the host and port to send the message back

15 var msg=t.Read(var host, var port);

16 echo msg;

17 t.Write("Hello Client!", host, port);

18 } catch (var exc) {

19 echo exc;

20 break;

21 }

22 }

23 t.Close();

24 }

25 }

And a minimal UDP client:

1 include UDPSocket.con

2

3 class Main {

4 Main() {

5 try {

6 var t=new UDPSocket();

7 t.Write("Hello Server!", "localhost", 2000);

8 echo t.Read();

9 t.Close();

10 } catch (var exc) {

11 echo exc;

12 return -1;

13 }

14 return 0;

15 }

16 }

The server should be run first, to way for a new connection. Then, in a
separate shell, run the client.

The server will show “Hello Server!” after the client connects and sends the
data, and the client will print “Hello Client!” (received from the server).

306 CHAPTER 11. SOCKETS AND NETWORKING

11.3 UNIX sockets

A Unix domain socket or IPC socket (inter-process communication socket)
is a data communications endpoint for exchanging data between processes
executing within the same host operating system. This kind of socket is
not available on Windows and is emulated using named pipes.

The UNIXSocket class, defined in UNIXSocket.con, has similar behavior
with TCP connection, although you could create a UDP-like unix socket
via low-level APIs. For establishing a connection, a client socket must
connect to a unix domain socket listening and accepting connections.

UNIXSocket members:

Connect (string socketname)
Used in client sockets, connects to the unix socket named
socketname. Returns true if succeeded, false if failed.

Listen (string socketname)
Used in server sockets, creates and listens on the given socketname.
Returns 0 if succeeded.

Accept (return static socket=false)
Waits for a connection on a server socket. Returns an UNIXSocket
object if return static socket is false, or a socket file descriptor as a
number otherwise.

Close ()
Closes the socket

Read (max size=0xFFFF)
Reads at most max size bytes and returns the read buffer. In case of
error, it throws an error string.

Write (string buffer)
Sends buffer on the socket. Returns the number of bytes sent. In
case of error, it throws an error string.

SetOption (number level, number option, number val)
Sets an option for socket. level may be SOL SOCKET. option is a
socket option (see TCP/IP options) and val the new value. Returns
0 on success, -1 on error.

11.3. UNIX SOCKETS 307

GetOption (number level, number option, var val)
Gets an option for socket. level may be SOL SOCKET. option is a
socket option (see bellow). Returns 0 on success and sets the val to
the value, -1 on error.

HasData : boolean property
Returns true if data can be read, or a connection event occurred.

Socket : number property
Returns the socket file descriptor for use with the low-level APIs

Error : number property
Returns the error code of the last socket operation

Every client socket must first make a successfully call to Connect in order
to perform Read or Write operations.

For the socket server you cannot call Read or Write directly. The function
call order is: Listen, client socket = Accept(), client socket.Read and/or
client socket.Write. A call to Listen will fail, if another server program
running on the same machine, listens on the same port.

Unix domain sockets use the file system as their address name space, for
every listening socket, a special file will be created (in our example
“mytestscoket” in the current directory).

A minimal UNIX domain socket server:

1 include UNIXSocket.con

2

3 class Main {

4 Main() {

5 var t = new UNIXSocket();

6 if (t.Listen("./mytestsocket")) {

7 echo "Error in listen\n";

8 return -1;

9 }

10

11

12 while (true) {

13 try {

14 var client=t.Accept();

15 if (!client)

308 CHAPTER 11. SOCKETS AND NETWORKING

16 break;

17

18 echo client.Read();

19 client.Write("Hello client!");

20 client.Close();

21 } catch (var exc) {

22 echo exc;

23 break;

24 }

25 }

26 t.Close();

27 }

28 }

And a minimal UNIX domain socket client:

1 include UNIXSocket.con

2

3 class Main {

4 Main() {

5 try {

6 var t=new UNIXSocket();

7 if (!t.Connect("./mytestsocket")) {

8 echo "Error connecting to unix socket";

9 return -1;

10 }

11 // send data to the server

12 t.Write("Hello Server!");

13 // wait data from the server

14 echo t.Read();

15 t.Close();

16 } catch (var exc) {

17 echo exc;

18 return -1;

19 }

20 return 0;

21 }

22 }

The above examples will work on Microsoft Windows, but internally will
use named pipes.

The server should be run first, to wait for a new connection. Then, in a

11.4. MULTICAST SOCKETS 309

separate shell, run the client.

The server will show “Hello Server!” after the client connects and sends the
data, and the client will print “Hello Client!” (received from the server).

In practice, the server will create a thread for every new connection,
immediately after calling Accept.

Note that there is no guarantee that a call to Write will send the entire
data buffer. It is important to analyze the result of the Write (the amount
of bytes written), and then call Write again for the remaining buffer. This
may happen also with Read, that may return less that the max size, and a
second call to Read may be needed. Due to socket send/receive buffer size,
a big buffer written on the socket, may be actually split in multiple
network packets.

11.4 Multicast sockets

In computer networking, multicast (one-to-many or many-to-many
distribution) is group communication where information is addressed to a
group of destination computers simultaneously. IP multicast is a method
of sending Internet Protocol (IP) datagrams to a group of interested
receivers in a single transmission. It is often employed for streaming media
applications on the Internet and private networks. The method is the
IP-specific version of the general concept of multicast networking. It uses
specially reserved multicast address blocks in IPv4 and IPv62.

The MulticastSocket class, defined in MulticastSocket.con handles the
datagrams received from a given source between sockets.

MulticastSocket members:

MulticastSocket (string host, number port)
Constructs the UDP multicast client socket using host:port as source.

Join (string host, interface=“””)
Joins a multicast group3. Returns true if succeeded or false if failed.

2http://en.wikipedia.org/wiki/IP multicast on August 1st, 2014
3Source-specific multicast, see http://en.wikipedia.org/wiki/Source-specific multicast

310 CHAPTER 11. SOCKETS AND NETWORKING

Drop (string host, interface=“””)
Drops a multicast group. Returns true if succeeded or false if failed

Close ()
Closes the socket

Read (var udphost=null, var udpport=null, max size=0xFFFF)
Reads at most max size bytes and returns the read buffer. On
success, sets the udphost and the udpport to the sender host,
respectively port. In case of error, it throws an error string.

Write (string buffer, string udphost, number port)
Sends buffer on the socket to the given udphost and port. Returns
the number of bytes sent. In case of error, it throws an error string.

SetOption (number level, number option, number val)
Sets an option for socket. level may be SOL SOCKET. option is a
socket option (see TCP/IP options) and val the new value. Returns
0 on success, -1 on error.

GetOption (number level, number option, var val)
Gets an option for socket. level may be SOL SOCKET. option is a
socket option (see bellow). Returns 0 on success and sets the val to
the value, -1 on error.

HasData : boolean property
Returns true if data can be read, or a connection event occurred.

Info : array property
Returns an array containing the IP and the port used by the current
socket. If the socket is invalid, it will return an empty array.

Socket : number property
Returns the socket file descriptor for use with the low-level APIs

Error : number property
Returns the error code of the last socket operation

Bellow is a complete example that uses unix and multicast sockets.
Note that this program must be executed using the multi-threaded Concept
core.

11.4. MULTICAST SOCKETS 311

1 include CircularBuffer.con

2 include HTTPServer.con

3 include MulticastSocket.con

4 include UNIXSocket.con

5

6 class MulticastProxy {

7 var source;

8 var port;

9 var timeout;

10 var SocketName="";

11

12

13 MulticastProxy(source, port, cname="default", timeout=30) {

14 this.source=source;

15 this.port=port;

16 this.timeout=timeout;

17 this.SocketName="/tmp/${cname}.sock";

18 }

19

20 Run() {

21 var unix=new UNIXSocket();

22 var sockname=this.SocketName;

23

24 _unlink(sockname);

25 unix.Listen(sockname);

26

27 var sock=unix.Accept();

28 if (!sock) {

29 echo "Error in UNIX socket/Accept\n";

30 return;

31 }

32

33 var m=new MulticastSocket(source, port);

34 var last = time();

35 var timeout = this.timeout;

36 var source=this.source;

37 // join the multicast group

38 if (m.Join(source)) {

39 while (true) {

40 var data = m.Read();

41 sock.Write(data);

42 var now=time();

43 if (now-last>=timeout) {

44 // rejoin every timeout seconds

312 CHAPTER 11. SOCKETS AND NETWORKING

45 if (!m.Drop(source))

46 echo "Error dropping\n";

47 else

48 if (!m.Join(source))

49 echo "Error in rejoin\n";

50 else

51 echo "Rejoined\n";

52 last=now;

53 }

54 }

55 } else

56 echo "Error joining multicast source\n";

57 }

58 }

59

60 class Main {

61 var[] buffers;

62 var Lock;

63

64 SafeBuffers() {

65 Lock.Lock();

66 var len=length buffers;

67 var[] final;

68 for (var i=0;i<len;i++) {

69 var buf=buffers[i];

70 if (buf)

71 final[length final]=buf;

72 }

73 Lock.Unlock();

74 return final;

75 }

76

77 RemoveBuffer(buffer) {

78 Lock.Lock();

79 var len=length buffers;

80 var[] final;

81 for (var i=0;i<len;i++) {

82 var buf=buffers[i];

83 if ((buf) && (buf!=buffer))

84 final[length final]=buf;

85 }

86 buffers=final;

87 Lock.Unlock();

88 }

89

11.4. MULTICAST SOCKETS 313

90 OnRequest(child, method, file, protocol, headers) {

91 if (method=="GET") {

92 var buffer;

93 try {

94 child.Write("$protocol 200 OK\r\nContent-type:

video/MP2T\r\n");

95 child.Write("\r\n");

96

97 Lock.Lock();

98 buffer = new CircularBuffer();

99 var idx = length buffers;

100 buffers[idx]=buffer;

101 Lock.Unlock();

102

103 while (true) {

104 var data=buffer.Get();

105 if (data)

106 child.Write(data);

107 else

108 Sleep(100);

109 }

110 } catch (var exc) {

111 if (buffer)

112 RemoveBuffer(buffer);

113 echo "Disconnected\n";

114 }

115 return 200;

116 }

117 }

118

119 Loop(source, program) {

120 var file = new File("r");

121 // extract ts from multiple ts using ffmpeg

122 file.Name = "ffmpeg -i $source -map 0:p:$program -vcodec

copy -acodec copy -c:s copy -f mpegts -";

123 // open as pipe

124 file.POpen();

125 while (true) {

126 if (file.Read(var data, 0xFFFF)<=0)

127 break;

128

129 // copy to local variable

130 var buffers = SafeBuffers();

131 var len = length buffers;

132 for (var i=0;i<len;i++) {

314 CHAPTER 11. SOCKETS AND NETWORKING

133 var buffer=buffers[i];

134 if (buffer)

135 buffer.Add(data);

136 }

137 }

138 file.Close();

139 }

140

141 Main() {

142 try {

143 var ip="227.10.11.2";

144 var port=1234;

145 var program=410;

146

147 var channel="HBO HD";

148 // use it as a semaphore to avoid

149 // concurrent writes

150 Lock = new ReentrantLock();

151

152 var h = new HTTPServer();

153 // handle the request ourselves

154 h.OnRequest=this.OnRequest;

155 h.Start(8000);

156

157 // create a proxy (multicast to unix socket)

158 var m=new MulticastProxy(ip, port, channel);

159 RunThread(m.Run);

160

161 Loop("unix://"+m.SocketName, program);

162 } catch (var exc) {

163 echo "Exception: $exc\n";

164 }

165 }

166 }

The previous example creates a HTTP sever that waits for connections on
port 8000, then reads from a multicast source using a MulticastSocket,
outputs the data to a UNIXSocket, extracts a specific program from a
MPTS (multiple program transport stream), coverts it to a SPTS (single
program transport stream) using an open source video processor (ffmpeg)
and then streams it to multiple HTTP clients. The UNIXSocket is used as
an IPC method for communicating with ffmpeg.

11.5. SSL/TLS COMMUNICATIONS 315

Multicast sockets are available on Concept Application Server 3.0 or
higher.

11.5 SSL/TLS communications

Transport Layer Security (TLS) and Secure Sockets Layer (SSL), are
cryptographic protocols which are designed to provide communication
security over insecure networks. They use X.509 certificates and hence
asymmetric cryptography to assure the counterparty with whom they are
communicating, and to exchange a symmetric key.

The TLS/SSL class is TLSSocket, a subclass of TCPSocket (inheriting all
its methods) and define in TLSSocket.con. Note that secure sockets can be
used with any type of socket, not just TCP. For UDP and UNIX domain
sockets, SSL/TLS is available only through low-level APIs, defined in
standard.net.tls.

TLSSocket specific members (see TCPSocket for inherited members):

TLS : number property
Returns the TLS handle for using it with low level APIs

CertificateInfo : array property
Returns a key-value array describing a certificate, with the following
keys: “subject” (array), “issuer” (array), serialNumber (hex string,
uppercase), “issued” (date, YYMMDDHHMMSSZ or
YYYYMMDDHHMMSSZ), “expires” (date), “sha1” (hex string,
uppercase), “md5” (hex string, uppercase), “publicKey” (binary
string).

TLSError : number property
Returns the last TLS error code (or 0 if no error)

TLSErrorString : string property
Returns a human readable string describing the last error

TrustFile : string property
Sets the verify location CA file

TrustPath : string property

316 CHAPTER 11. SOCKETS AND NETWORKING

Sets the verify location CA directory

LoadKeys (string certfilename, string keyfilename)
Loads certificate and key from the given files. Returns 0 on succes, -1
if file named certfilename is invalid, -2 if file named keyfilename is
invalid or -3 if key pair verification failed.

LoadKeysBuffer (string cert, string key)
Loads certificate and key from the given string buffers. Returns 0 on
succes, -1 if cert is invalid, -2 if key is invalid or -3 if key pair
verification failed.

Verify ()
Verifies the certificate returns a x509 certificate verification status.

AddCA (string certificate)
Adds a client CA(Certificate Authority) from the certificate buffer.

The TLSSocket class was designed to be a drop-in replacement for
TCPSocket.

Every client socket must first make a successfully call to Connect in order
to perform Read or Write operations.

For the socket server you cannot call Read or Write directly. The function
call order is: Listen, client socket = Accept(), client socket.Read and/or
client socket.Write. A call to Listen will fail, if another server program
running on the same machine, listens on the same port(TCP).

A minimal TLS web server:

1 include TLSSocket.con

2

3 class Main {

4 Main() {

5 var t=new TLSSocket();

6 if ((!t.Listen(443)) && (!t.LoadKeys("publickey.cer",

"privatekey.pem"))) {

7 while (true) {

8 try {

9 var child = t.Accept();

10 while (child.HasData>0)

11 echo child.Read();

11.5. SSL/TLS COMMUNICATIONS 317

12 child.Write("HTTP/1.1 200 OK\r\nContent-Type:

text/plain\r\n\r\nHello world!");

13 child.Close();

14 } catch (var exc) {

15 echo exc;

16 }

17 }

18 } else

19 echo t.TLSError;

20 }

21 }

Note the keys. The keys were generated used openssl:

openssl genrsa -out privatekey.pem 2048

openssl req -new -x509 -key privatekey.pem -out publickey.cer -days

1825

Optionally:

openssl pkcs12 -export -out public_privatekey.pfx -inkey

privatekey.pem -in publickey.cer

A minimal TLS client:

1 include TLSSocket.con

2

3 class Main {

4 Main() {

5 var t=new TLSSocket();

6 try {

7 t.TrustPath="ssl";

8 if (t.Connect("localhost", 443)) {

9 switch (t.Verify()) {

10 case X509_V_OK:

11 break;

12 case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT:

13 case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN:

14 echo "Self-signed certificate\n";

15 break;

16 case X509_V_ERR_CERT_HAS_EXPIRED:

318 CHAPTER 11. SOCKETS AND NETWORKING

17 case X509_V_ERR_CRL_HAS_EXPIRED:

18 case X509_V_ERR_CERT_NOT_YET_VALID:

19 case X509_V_ERR_CRL_NOT_YET_VALID:

20 echo "Certificate expired or not yet valid\n";

21 break;

22 default:

23 break;

24 }

25 t.Write("GET /\r\n");

26 echo t.Read();

27 t.Close();

28 }

29 } catch (var exc) {

30 echo exc;

31 }

32 }

33 }

The output:

Self-signed certificate

HTTP/1.1 200 OK

Content-Type: text/plain

Hello world!

The server should be run first, to wait for a new connection. Then, in a
separate shell, run the client. Instead of running the client, a web browser
could be used to navigate to https://localhost. Note that the browser will
generate an alert for self-signed certificate.

In practice, the server will create a thread for every new connection,
immediately after calling Accept. All rules and member order-of-call are
identical with TCP/IP sockets.

By default, the server and client will negotiate the safest protocol between
SSLv2, SSLv3 and TLS. The Concept Framework secure socket APIs are
based on OpenSSL (libssl).

11.6. BLUETOOTH SOCKETS 319

11.6 Bluetooth sockets

Bluetooth is a wireless technology standard for exchanging data over short
distances (using short-wavelength radio waves in the ISM band from 2.4 to
2.485 GHz) from fixed and mobile devices, and building personal area
networks (PANs).4

Bluetooth sockets are similar to the TCP sockets. On the server side, a
socket will call Listen and wait for a connection, while on the client side,
Connect will be called. Instead of IP addresses, the hardware address of
the device will be used. The hardware address is identical with network
MAC used by the IP sockets. A media access control address (MAC
address) is a unique identifier assigned to network interfaces for
communications on the physical network segment.5.

Concept Framework supports 3 bluetooth protocols:

L2CAP
L2CAP is used within the Bluetooth protocol stack. It passes
packets to either the Host Controller Interface (HCI) or on a hostless
system, directly to the Link Manager/ACL link. L2CAP is used to
communicate over the host ACL link. Its connection is established
after the ACL link has been set up.

In basic mode, L2CAP provides packets with a payload configurable
up to 64 kB, with 672 bytes as the default MTU, and 48 bytes as the
minimum mandatory supported MTU. In retransmission and flow
control modes, L2CAP can be configured for reliable or asynchronous
data per channel by performing retransmissions and CRC checks.
Reliability in either of these modes is optionally and/or additionally
guaranteed by the lower layer Bluetooth BDR/EDR air interface by
configuring the number of retransmissions and flush timeout (time
after which the radio will flush packets). In-order sequencing is
guaranteed by the lower layer.

RFCOMM
The Bluetooth protocol RFCOMM is a simple set of transport
protocols, made on top of the L2CAP protocol, providing emulated

4http://en.wikipedia.org/wiki/Bluetooth on February 25, 2014
5http://en.wikipedia.org/wiki/MAC address

320 CHAPTER 11. SOCKETS AND NETWORKING

RS-232 serial ports (up to sixty simultaneous connections to a
Bluetooth device at a time). RFCOMM is sometimes called serial
port emulation. RFCOMM provides a simple reliable data stream to
the user, similar to TCP. Many Bluetooth applications use
RFCOMM because of its widespread support and publicly available
API on most operating systems. Additionally, applications that used
a serial port to communicate can be quickly ported to use
RFCOMM. In the protocol stack, RFCOMM is bound to L2CAP6.

Service discovery protocol (SDP)
Used to allow devices to discover what services each other support,
and what parameters to use to connect to them. For example, when
connecting a mobile phone to a Bluetooth headset, SDP will be used
to determine which Bluetooth profiles are supported by the headset
(headset profile, hands free profile, advanced audio distribution
profile, etc.) and the protocol multiplexer settings needed to connect
to each of them. Each service is identified by a Universally Unique
Identifier (UUID)

Concept Framework implements the BTSocket class, defined in
BTSocket.con supporting both the bluetooth sockets and basic
cross-platform SDP functions.

BTSocket members:

BTSocket (type = BTPROTO RFCOMM)
Constructor. type is the protocol type to use with the socket. Valid
values are BTPROTO RFCOMM and BTPROTO L2CAP.

Connect (string hostandchannel, string service =
”00000000-0000-0000-0000-000000000000”)
Used in client sockets, connects the server at given hostandchannel in
the form (host):channel, for example (AA:BB:CC:DD:EE:FF):1.
Returns true if succeeded, false if failed.

Listen (number channel, number maxconnections = 0xFF, interface=“””)
Used in server sockets, listens on the given channel and interface. If
interface is not set, will listen on all available interfaces.
maxconnections specifies the maximum concurrent connections.
Returns 0 if succeeded.

6http://en.wikipedia.org/wiki/Bluetooth protocols on Febrary 25, 2014

11.6. BLUETOOTH SOCKETS 321

Accept (return static socket=false)
Waits for a connection on a server socket. Returns a BTSocket
object if return static socket is false, or a socket file descriptor as a
number otherwise.

Close ()
Closes the socket

Read (max size=0xFFFF)
Reads at most max size bytes and returns the read buffer. In case of
error, it throws an error string.

Write (string buffer)
Sends buffer on the socket. Returns the number of bytes sent. In
case of error, it throws an error string.

SetOption (number level, number option, number val)
Sets an option for socket. Returns 0 on success.

GetOption (number level, number option, var val)
Gets an option for socket. Returns 0 on success and sets the val to
the value, -1 on error.

HasData : boolean property
Returns true if data can be read, or a connection event occurred.

Info : array property
Returns an key-value array containing the hardware address
(“address” key) and the channel (“port” key) used by the current
socket. If the socket is invalid, it will return an empty array.

Socket : number property
Returns the socket file descriptor for use with the low-level APIs

Error : number property
Returns the error code of the last socket operation

static boolean Register (string servicename, string service uuid,
number port=-1, comments=””)
Register(SDP) a service called servicename on the given
port/channel. See bellow for a complete list with all the services.
Returs true on success, false if failed.

322 CHAPTER 11. SOCKETS AND NETWORKING

static boolean Unregister (string servicename, string service uuid,
number port=-1, comments=””)
Unregisters(SDP) a previously registered service named servicename
(all other parameters are ignored). Returs true on success, false if
failed.

static array Discover (string service type uuid=””)
Scan for a list of all devices and all the available services. If
service type uuid is set, it will only scan for services matching the
given UUID (universally unique identifier). An UUID is held as a
string in the {00000000-0000-0000-0000-000000000000} format. If no
bluetooth adapter is available on the host machine, it will return null.
If no devices are in range, it will return an empty array. If devices
are in range, it will return an array, having the following structure:

Array {

[0] =>

Array {

[0,"Name"] => Device Name

[1,"Comment"] =>

[2,"Address"] => (5C:E8:EB:40:C5:6D)

[3,"Services"] =>

Array {

[0] =>

Array {

[0,"Name"] => OBEX File Transfer

[1,"Comment"] =>

[2,"Service"] =>

{00000000-0000-0000-0000-000000000000}

[3,"Address"] => (5C:E8:EB:40:C5:6D):5

}

[1] =>

Array {

[0,"Name"] => Advanced Audio

[1,"Comment"] =>

[2,"Service"] =>

{00000000-0000-0000-0000-000000000000}

[3,"Address"] =>

(5C:E8:EB:40:C5:6D):25

}

...

}

}

[1] =>

11.6. BLUETOOTH SOCKETS 323

Array {

[0,"Name"] => Device Name 2

[1,"Comment"] =>

[2,"Address"] => (E4:32:CB:C7:A9:F3)

}

...

}

Predefined values to be used as service UUID are:

ServiceDiscoveryServer UUID, BrowseGroupDescriptor UUID SerialPort UUID,

LANAccessUsingPPP UUID, DialupNetworking UUID, IrMCSync UUID,

OBEXObjectPush UUID, OBEXFileTransfer UUID, IrMCSyncCommand UUID,

Headset UUID, CordlessTelephony UUID, AudioSource UUID, AudioSink UUID,

AVRemoteControlTarget UUID, AdvancedAudioDistribution UUID,

AVRemoteControl UUID, VideoConferencing UUID, Intercom UUID, Fax UUID,

HeadsetAudioGateway UUID, WAP UUID, WAPClient UUID, PANU UUID,

NAP UUID, GN UUID, DirectPrinting UUID, ReferencePrinting UUID,

Imaging UUID, ImagingResponder UUID, ImagingAutomaticArchive UUID,

ImagingReferenceObjects UUID, Handsfree UUID,

HandsfreeAudioGateway UUID, DirectPrintingReferenceObjects UUID,

ReflectedUI UUID, BasicPringing UUID, PrintingStatus UUID,

HumanInterfaceDevice UUID, HardcopyCableReplacement UUID,

HCRPrint UUID, HCRScan UUID, CommonISDNAccess UUID,

VideoConferencingGW UUID, UDIMT UUID, UDITA UUID, AudioVideo UUID,

SIMAccess UUID, PnPInformation UUID, GenericNetworking UUID,

GenericFileTransfer UUID, GenericAudio UUID and GenericTelephony UUID

Every client socket must first make a successfully call to Connect in order
to perform Read or Write operations.

For the socket server you cannot call Read or Write directly. The function
call order is: Listen, client socket = Accept(), client socket.Read and/or
client socket.Write. A call to Listen will fail, if another server program
running on the same machine, listens on the same channel. The function
call sequence is exactly the same as for TCPSocket.

A minimal Bluetooth server:

1 include BTSocket.con

2

324 CHAPTER 11. SOCKETS AND NETWORKING

3 class Main {

4 Main() {

5 var srv_name = "My test service";

6 var s=new BTSocket();

7 // listen on channel 1, accept max one connection

8 if (s.Listen(1, 1)) {

9 echo "Error initializing server";

10 return;

11 }

12 echo "Bluetooth server initialized\n";

13

14 // make the service discoverable (as serial port service)

15 if (BTSocket.Register(srv_name, SerialPortService_UUID))

16 echo "Service $srv_name successfully registered\n";

17

18 while (true) {

19 var client = s.Accept();

20 echo client.Read();

21 client.Write("Hello !");

22 }

23 s.Close();

24 BTSocket.Unregister(srv_name);

25 }

26 }

And a minimal Bluetooth client, that will scan for devices and then send
“Hello !” to all devices having a service named “My test service”.

1 include BTSocket.con

2

3 class Main {

4 Main() {

5 try {

6 var s=new BTSocket();

7 var devices = s.Discover();

8 if (devices) {

9 var len = length devices;

10 for (var i=0;i<len;i++) {

11 var device=devices[i];

12

13 var services=device["Services"];

14 if (services) {

15 var device_name=device["Name"];

16 var len2=length services;

11.7. CRYPTOGRAPHIC FUNCTIONS 325

17 for (var j=0;j<len2;j++) {

18 var service=services[j];

19 if ((service) && (service["Name"]=="My

test service")) {

20 var addr_and_port=service["Address"];

21 if (addr_and_port) {

22 echo "Connecting to $device_name

[$addr_and_port]\n";

23 if (s.Connect(addr_and_port)) {

24 echo "Connected !";

25 s.Write("Hello !");

26 echo s.Read();

27 }

28 }

29 }

30 }

31 }

32 }

33 }

34 } catch (var exc) {

35 echo exc;

36 return -1;

37 }

38 return 0;

39 }

40 }

The server should be run first, to wait for a new connection. Then, on a
separate machine, run the client.

11.7 Cryptographic functions

Concept Framework supports a set of frequent used cryptographic and
hashing algorithms, by importing standard.lib.cripto. Note that cripto is
misspelled. By the time it was noticed, there was already a consistent set
of applications using this library, so I decided not to change it, because
Concept is and will be backwards-compatible, meaning that an application
written for Concept 1.0 will run with no problem on CAS 3.0.

The cryptographic and hashing static functions are optimized for high

326 CHAPTER 11. SOCKETS AND NETWORKING

CPU efficiency. It includes algorithms like RSA, AES, MD5, SHA1,
SHA256, Murmur or PBKDF2.

High level standard.lib.cripto functions:

md5 (string buffer)
Computes the md5 hash for the buffer and returns the value as a
hexadecimal string (lowercase)

sha1 (string buffer)
Computes the sha1 hash for the buffer and returns the value as a
hexadecimal string (lowercase)

sha256 (string buffer)
Computes the sha256 hash for the buffer and returns the value as a
hexadecimal string (lowercase)

crc32 (string buffer)
Computes the crc32 for the buffer and returns the value as a number
(32 bit)

Murmur (string buffer)
Computes the Murmur hash for the buffer and returns the value as a
number (32 bit)

PBKDF2 (string password, string salt, key size=16, rounds=1000)
Returns the generated derived key as a string buffer. password is the
master password from which a derived key is generated, salt is a
cryptographic salt. key size is the desired length of the derived key.
rounds is the number of iterations desired. DRMKey()
Returns the private symmetric key used in concept protocol
negotiation. This is useful for sending encrypted VoIP packages over
unsecured connections.

hmac md5 (string key, string message, var outhash)
Computes the MAC(message authentication code) using MD5 as
hash function, and outputs in outhash as a lowercase hex string.
Returns 0 on success.

hmac sha1 (string key, string message, var outhash)
Computes the MAC using SHA1 as hash function, and outputs in
outhash as a lowercase hex string. Returns 0 on success.

11.7. CRYPTOGRAPHIC FUNCTIONS 327

hmac sha256 (string key, string message, var outhash)
Computes the MAC using SHA256 as hash function, and outputs in
outhash as a lowercase hex string. Returns 0 on success.

Low level hashing functions:

MD5Init ()
Returns an md5 context handle

MD5Update (context, string data)
Appends (and updates)data to the md5 context

MD5Final (context)
Frees the md5 context and returns the hash a lowercase hex string

SHA1Init ()
Returns an sha1 context handle

SHA1Update (context, string data)
Appends (and updates)data to the sha1 context

SHA1Final (context)
Frees the sha1 context and returns the hash a lowercase hex string

SHA256Init ()
Returns an sha256 context handle

SHA256Update (context, string data)
Appends (and updates)data to the sha256 context

SHA256Final (context)
Frees the sha256 context and returns the hash a lowercase hex string

AES (Advanced Encryption Standard) is an symmetrical encryption
algorithm. This means that the same key is used both from encryption and
decryption. Concept uses a very fast implementation of the AES
algorithm, allowing programs to encrypt/decrypt data in real-time,
without wasting significant CPU power.

AES Cryptographic functions:

328 CHAPTER 11. SOCKETS AND NETWORKING

AESEncryptInit (string key)
Key must be 128, 192 or 256 bits in length (16 bytes, 24 bytesm
respectively 32 bytes). Returns an AES context handle

AESEncrypt (context, string data, mode=BLOCKMODE ECB,
force PCKS7 padding=false)
Mode may by BLOCKMODE ECB or BLOCKMODE CBC. If
force PCKS7 padding is set to true, complete packets will be padded.

AESDecryptInit (string key)
Key must be 128, 192 or 256 bits in length (16 bytes, 24 bytesm
respectively 32 bytes). Returns an AES context handle

AESDecrypt (context, string data, mode=BLOCKMODE ECB,
force PCKS7 padding=false)
Mode may by BLOCKMODE ECB or BLOCKMODE CBC. If
force PCKS7 padding is set to true, complete packets will be padded.

AESRelease (context)
Frees the memory associated with an AES context

For other AES block modes (128 bit only) see Concept Framework
documentation for: context AesSetKey(key), AesDone(context) ,
AesSetInitVector(context, string vector), AesSetFeedbackSize(context, size),
string AesEncryptECB(context, buffer, force PCKS7=false),
AesEncryptCBC, AesEncryptPCBC, AesEncryptCRT, AesEncryptOFB,
AesEncryptCFB, AesDecryptECB, string AesDecryptCBC(context, buffer,
force PCKS7=false), AesDecryptPCBC, AesDecryptCRT, AesDecryptOFB,
AesDecryptCFB.

RSA is an asymmetric encryption algorithm. This means that it uses two
different keys, one for encrypting (called public key) and another for
decrypting (the private key). It is not possible to use the public key for
decrypting.

Basic RSA Cryptographic functions:

rsa generate keys (number keybits, var private key, var public key)
Generates a random keybits bits key pair and sets private key and
public key. Returns true on success.

11.7. CRYPTOGRAPHIC FUNCTIONS 329

rsa encrypt (string plain text, string public key)
Encrypts text with the given public key. Returns the encrypted
string (cipher text).

rsa decrypt (string cipher text, string private key)
Decrypts text with the given private key. Returns the plain text
string.

rsa sign (string plain text, string private key)
Signs text using the given private key. Returns the encrypted string
(cipher text).

rsa verify ()
Verifies text using the given public key. Returns plain text.

RSA and AES work great together. You can use RSA’s public key/private
key feature to safely exchange a symmetric AES key. Also, RSA uses
significantly more resources than AES, and is limited to relatively small
messages (up to 245 bytes for 2048 bit keys). The maximum RSA message
size (in bytes) is KeySizeInBits / 8 - 11. On the other hand, AES has no
message limit.

AES can use different modes. ECB (Electronic Codebook) and CBC
(Cipher-Block Chaining) are supported for all key sizes. When in ECB
mode, each plain text block in encrypted independently. In CBC mode,
each block of plaintext is XORed with the previous ciphertext block before
being encrypted. Figure 11.1 shows how an image(left) will appear after
being ecrypted using ECB(center) and CBC(right). It doesn’t mean that
CBC is safer than ECB. It only means that ECB produces an output that
is indistinguishable from random noise. When using CBC, if a data block
is lost, the following blocks will not be decrypted correctly.

cryptoexample.con

1 import standard.lib.cripto

2

3 class Main {

4 Encrypt(plaintext, password) {

5 // 16 bytes = 128 bits key, 10000 rounds

6 var key=PBKDF2(password, "SALT.Devronium", 16, 10000);

7

8 var ctx=AESEncryptInit(key);

330 CHAPTER 11. SOCKETS AND NETWORKING

Figure 11.1:
AES modes

9 var ciphertext=AESEncrypt(ctx, plaintext, BLOCKMODE_CBC,

true);

10 AESRelease(ctx);

11 return ciphertext;

12 }

13

14 Decrypt(ciphertext, password) {

15 // 16 bytes = 128 bits key, 10000 rounds

16 var key=PBKDF2(password, "SALT.Devronium", 16, 10000);

17 var ctx=AESDecryptInit(key);

18 var plaintext=AESDecrypt(ctx, ciphertext, BLOCKMODE_CBC,

true);

19 AESRelease(ctx);

20 return plaintext;

21 }

22

23 Main() {

24 var cipher = this.Encrypt("Hello world !", "Some password");

25 echo this.Decrypt(cipher, "Some password");

26 }

27 }

cryptoexample.con will encrypt ”Hello world !” using AES-128 (see
Encrypt) and then will decrypt the resulted cipher text using Decrypt. For
using AES-192 or AES-256, the line PBKDF2(password,
“SALT.Devronium”, 16, 10000) must be chganged to PBKDF2(password,

11.7. CRYPTOGRAPHIC FUNCTIONS 331

“SALT.Devronium”, 24, 10000) or PBKDF2(password,
“SALT.Devronium”, 32, 10000) in both functions.

rsaexample.con

1 import standard.lib.cripto

2

3 class Main {

4 Main() {

5 // generate a random key pair

6 // may take up to a few seconds

7 rsa_generate_keys(512, var priv, var pub);

8 // encrypt

9 var cipher = rsa_encrypt("Hello world !", pub);

10 // decrypt

11 echo rsa_decrypt(cipher, priv);

12 }

13 }

The above example will generate a key pair, will encrypt ”Hello world !”
using the public key and the decrypt it using the private key. Key
generation is a relatively slow process, and generating random key pairs for
every session will not be practical. In practice, the RSA keys will be
pre-generated and stored on a disk.

Concept Framework provides a simple RSA class, defined in RSA.con. It is
mostly a wrapper for the OpenSSL command line utility.

The previous example can be rewritten to use OpenSSL’s RSA
implementation:

1 include RSA.con

2

3 class Main {

4 Main() {

5 try {

6 if (!RSA.GenerateKeys(var pub, var priv, 512))

7 return -1;

8

9 var cipher = RSA.Encrypt(pub, "Hello world !");

10 echo RSA.Decrypt(priv, cipher);

11 } catch (var exc) {

12 echo exc;

332 CHAPTER 11. SOCKETS AND NETWORKING

13 }

14 }

15 }

Note that you cannot decrypt using rsa decrypt the output of
RSA.Encrypt, or share keys between the two.

hashexample.con

1 import standard.lib.cripto

2

3 class Main {

4 Main() {

5 var text = "Hello World!";

6 echo "MD5($text)\t:\n "+md5(text)+"\n";

7 echo "SHA1($text)\t:\n "+sha1(text)+"\n";

8 echo "SHA256($text)\t:\n "+sha256(text)+"\n";

9 echo "CRC32($text)\t:\n "+crc32(text)+"\n";

10 echo "Murmur($text)\t:\n "+Murmur(text)+"\n";

11 }

12 }

The output:

MD5(Hello World!) :

ed076287532e86365e841e92bfc50d8c

SHA1(Hello World!) :

2ef7bde608ce5404e97d5f042f95f89f1c232871

SHA256(Hello World!) :

7f83b1657ff1fc53b92dc18148a1d65dfc2d4b1fa3d677284addd200126d9069

CRC32(Hello World!) :

472456355

Murmur(Hello World!) :

1624100388

Murmur hash is a very interesting non-cryptographic hash function due to
its very fast execution time, being perfect for hash-based lookup. The
Concept Core use this function internally, for faster lookups.

11.8. HIGH LEVEL PROTOCOLS 333

11.8 High level protocols

A set of high level protocols are available in Concept Framework.

Protocol Class include/import

SMTP MSMTP MSMTP.con

FTP FtpConnection, FtpFile Ftp.con

POP3 (static interface) standard.net.mail

SIP OPALSIP OPALSIP.con

DNS (static interface) standard.net.dns

GeoIP GeoIP GeoIP.con

SNMP SNMP SNMP.con

IM (static library) standard.net.im

Modbus (static library) standard.net.modbus

RouterOS (static library) standard.net.routeros

SOAP (static library) standard.net.soap

Twitter Twitter Twitter.con

HTTP(s) URL URL.con

METAR METAR METAR.con

WolframAlpha WolframAlpha WolframAlpha.con

GoogleSearch GoogleSearch GoogleSearch.con

We will discuss some of them in detail, for the others, see the Concept
Documentation.

For exmaple, Wolfram Alpha is a computational knowledge engine or
answer engine developed by Wolfram Research. It is an online service that
answers factual queries directly by computing the answer from externally
sourced “curated data”, rather than providing a list of documents or web
pages that might contain the answer as a search engine might.

simpleWolfram.con

1 include WolframAlpha.con

2 import standard.C.io

3

4 define WOLFRAM_KEY "replace_with_your_api_key"

5

6 class Main {

7 function Main() {

8 var w=new WolframAlpha(WOLFRAM_KEY);

334 CHAPTER 11. SOCKETS AND NETWORKING

9 w.FetchRemoteContent=true;

10 try {

11 var result=w.Query("y^2=x^2 - x^4");

12 var arr=result.Pods;

13 var len=length arr;

14

15 for (var i=0;i<len;i++) {

16 var pod=arr[i];

17 echo "$i:"+pod.Text;

18 //if (pod.Sound)

19 // WriteFile(pod.SoundContent, "out$i.mid");

20 //echo "\n";

21 }

22 } catch (var exc) {

23 echo exc;

24 }

25 }

26 }

We asked to plot y2 = x2 − x4, but in reality we can ask anything, for
example “weather in Nepal”. A full UI example can be found in the
Samples directory of your Concept Distribution (WolframTest).

A protocol that gets used a lot by spammers si SMTP, short for Simple
Mail Transfer Protocol. This protocol gets used every time you send an
e-mail.

1 include MSMTP.con

2

3 class Main {

4 Main() {

5 var m=new MSMTP();

6 m.Host="mail.spammer.com";

7 m.From="master@spammer.com";

8 m.To="victim@domain.com";

9 //m.User="username";

10 //m.Password="password";

11

12 if (m.Send("Hello world !!!"))

13 echo "Success!";

14 }

15 }

11.8. HIGH LEVEL PROTOCOLS 335

Figure 11.2:
Wolfram Alpha APIs

336 CHAPTER 11. SOCKETS AND NETWORKING

For a complete list of MSMTP’s members, see Concept Framework
documentation, topic MSMTP.

standard.coding.base64 provides functions for base64 encoding. Base64 is a
group of similar binary-to-text encoding schemes that represent binary
data in an ASCII string format by translating it into a radix-64
representation. The term Base64 originates from a specific MIME content
transfer encoding.7.

standard.coding.base64 provides two static functions:

string mime_encode(string binarydata);

string mime_decode(string base64data);

mime encode returns the base64 encoded data of the binarydata. The
resulting data can be then decoded using mime decode.

METAR is a format for reporting weather information. A METAR
weather report is predominantly used by pilots in fulfillment of a part of a
pre-flight weather briefing, and by meteorologists, who use aggregated
METAR information to assist in weather forecasting. METARs typically
come from airports or permanent weather observation stations. Reports
are generated once an hour or half-hour, but if conditions change
significantly, a report known as a special (SPECI) may be issued.

The METAR class is defined in METAR.con and uses public data from the
noaa.gov ftp server.

simplemetar.con

1 include METAR.con

2

3 class Main {

4 Main() {

5 // KJFK = John F. Kennedy International Airport, New York

6 // look for an ICAO list for all available stations

7 var metar=METAR::Get("KJFK");

8 if (metar) {

9 var strdata="Temperature in New York is

${metar.Temperature}C, wind ${metar.WindKH}Km/h";

10 if (metar.Overcast)

7Source: http://en.wikipedia.org/wiki/Base64 on January 25, 2014

11.8. HIGH LEVEL PROTOCOLS 337

11 strdata+=", cloudy";

12 var modifier="";

13 if (metar.Intensity==MODIFIER_HEAVY)

14 modifier="heavy ";

15 else

16 if (metar.Intensity==MODIFIER_LIGHT)

17 modifier="light ";

18

19 if ((metar.Snow) || (metar.TempoSnow))

20 strdata+=", ${modifier}snow";

21 if ((metar.Rain) || (metar.TempoRain))

22 strdata+=", ${modifier}rain";

23 if ((metar.Thunderstorm) || (metar.TempoThunderstorm))

24 strdata+=", thunderstorm";

25 if (metar.Fog)

26 strdata+="fog";

27

28 echo strdata;

29 }

30 }

31 }

Output:

Temperature in New York is 4C, wind 26Km/h

Using the METAR data you can easily create an weather application. You
just need a list with all the ICAO codes (the location indicator assigned by
the International Civil Aviation Organization). Then, using GeoIP or
location services, you locate the user, and look for the nearest station, and
get the METAR data for that station. Also, METAR

standard.net.im implements protocols for instant messaging protocols like
Bonjour, Gadu-Gadu, IRC, Lotus Sametime, MySpaceIM, MXit, MSNP,
Novell GroupWise, OSCAR (AIM/ICQ/MobileMe), SIP/SIMPLE, SILC,
XMPP/Jingle (Google Talk, LJ Talk, Gizmo5, Facebook Chat, ...), YMSG
and Zephyr. For more information check Concept Framework
documentation and libpurple APIs. The BasicPurpleIO class, defined in
BasicPurpleIO.con provides a simple (and limited) way for exchanging
instant messages.

simpleim.con

338 CHAPTER 11. SOCKETS AND NETWORKING

1 include BasicPurpleIO.con

2

3 class Main {

4 var P;

5

6 OnMessage(conv, who, alias, message, flags, mtime) {

7 echo "$who> $message\n";

8 if (who) {

9 // echo back the message

10 P.SendIm(who, message);

11 }

12 }

13

14 OnFileTransfer(xfer, filename, filesize) {

15 echo "Accepting $filename ($filesize bytes)\n";

16 BasicPurpleIO::Accept(xfer, filename);

17 }

18

19 OnFinishTransfer(xfer) {

20 echo "Done $xfer !\n";

21 }

22

23 OnSignedOn(gc) {

24 echo P.Buddies;

25 P.SendIm("yourbuddysid", "Hello! I just signed in");

26 }

27

28 Main() {

29 P=new BasicPurpleIO();

30 echo P.Protocols;

31 P.OnSignedOn=OnSignedOn;

32 P.OnMessage=OnMessage;

33 P.OnFileTransfer=OnFileTransfer;

34 P.OnFinishTransfer=OnFinishTransfer;

35 P.Login("prpl-yahoo", "youryahooid", "yahoopassword");

36 P.Go();

37 }

38 }

Replace youryahooid, yahoopassword with your YahooID credentials, and
yourpuddysid with a buddy to which a message will be send upon log-in.

You can just change the prpl-yahoo with prpl-msn to log in to MSN

11.8. HIGH LEVEL PROTOCOLS 339

messenger. For a list of all the supported protocols, you should read the
BasicPurpleIO.Protocols read-only property.

The standard.net.modbus import library implements support for the
Modbus protocol, using libmodbus8. Modbus is a serial communications
protocol originally published by Modicon (now Schneider Electric) in 1979
for use with its programmable logic controllers (PLCs). Simple and robust,
it has since become a de facto standard communication protocol, and it is
now a commonly available means of connecting industrial electronic
devices9.

The APIs implemented by standard.net.modbus are almost identical with
the C APIs implemented by libmodbus (see libmodbus documentation at
http://libmodbus.org/documentation/ for more information).

A minimal Modbus client is shown bellow:

modbus.con

1 import standard.net.modbus

2

3 class Main {

4 GetModbusData(ip, reg_start, len, port=502) {

5 var mb = modbus_new_tcp(ip, port);

6 modbus_connect(mb);

7 modbus_read_registers(mb, reg_start, len, var tab_reg);

8 modbus_close(mb);

9 modbus_free(mb);

10 return tab_reg;

11 }

12

13 Main() {

14 // read starting from register 7

15 // (6, here, because is zero-based)

16 // 4 values

17 echo GetModbusData("192.168.1.130", 6, 4);

18 }

19 }

Note that the standard.net.modbus simply wraps the libmodbus, so you will

8http://libmodbus.org/
9http://en.wikipedia.org/wiki/Modbus on March 2nd, 2014

340 CHAPTER 11. SOCKETS AND NETWORKING

need to explicitly call modbus close and modbus free. This is implemented
this way for maintaining compatibility with already written C code.

11.9 SSH protocol

Secure Shell (SSH) is a cryptographic network protocol for secure data
communication, remote command-line login, remote command execution,
and other secure network services between two networked computers that
connects, via a secure channel over an insecure network, a server and a
client (running SSH server and SSH client programs, respectively).10

The standard.net.ssh import library provides the following SSH static
functions:

handle SSHConnect (number socket[,var errcode])
Negotiates a connection withe the server on the given TCP socket
(must be connected). If errcode is given, it will contain the error
code of the operation (if failed). Returns a session handle if
succeeded or null if failed.

string SSHFingerprint (handle session)
Returns the SSH host key as s string for the given session.

number SSHAuth (handle session, string username, string password)
Authenticates to the remote host on the initialized session, using
username and password. Returns 0 if succeeds, non-zero if failed.

number SSHAuthPublicKey (handle session, string username, string
pubfile, string privfile, string passphrase)
Authentificates to the remote SSH server using a public key, read
from a file. pubfile is the path name of the public key file. (e.g.
/etc/ssh/hostkey.pub), privfile is the path name of the private key
file. (e.g. /etc/ssh/hostkey) and passphrase is the passphrase to use
when decoding privatekey. Returns 0 if succeeds, non-zero if failed.

handle SSHChannelOpen (handle session)
Opens a SSH channel in the given session. Returns a channel handle
is succeeded, or null if it fails.

10http://en.wikipedia.org/wiki/Secure Shell on March 6, 2014

11.9. SSH PROTOCOL 341

number SSHLastError (handle session)
Returns the error code of the last operation for the given session.

string SSHLastErrorString (handle session)
Returns the error description as a human readable string, of the last
operation for the given session.

number SSHShell (handle channel)
Request a shell on a channel. Returns 0 if succeeds, non-zero if failed.

number SSHProcess (handle channel, string request, string message)
Request a shell on a channel. request is the process type to startup.
The SSH2 protocol currently defines shell, exec, and subsystem as
standard process services. message is the request specific message
data to include. Returns 0 if succeeds, non-zero if failed.

number SSHExec (handle channel, string command)
Executes the given command on the opened channel. Returns 0 if
succeeds, non-zero if failed.

string SSHRead (handle channel, number max size)
Reads data from the channel and returns it. On error it will return
an empty string.

number SSHWrite (handle channel, string buffer)
Writes buffer on the opened channel. Returns the number of bytes
written, or a negative value if it failed.

number SSHSendEOF (handle channel)
Sends EOF on the given channel. Returns 0 if succeeded, non-zero if
failed.

SSHSetKeepAlive (handle session, boolean want replay, number
seconds)
Sets the keep-alive seconds for the given session. If want reply is set,
a replay will be requested to the SSH server.

number SSHSendKeepAlive (handle session, var seconds)
Sends a keep alive packet and sets seconds to the number of seconds
until the next keep alive packet. Returns 0 if succeeded, non-zero if
failed.

SSHSetBlocking (handle session, boolean blocking)
Makes SSHRead non-blocking (if blocking is set to true).

342 CHAPTER 11. SOCKETS AND NETWORKING

number SSHChannelClose (handle channel)
Closes a SSH channel. Returns 0 if succeeded, non-zero if failed. If it
fails, the channel is not freed.

number SSHDisconnect (handle session)
Closes a SSH session. Returns 0 if succeeded, non-zero if failed.

The following example will connect to a remote host running a SSH server,
and then execute a “ls” command.

SSHclient.con

1 import standard.net.ssh

2 include TCPSocket.con

3

4 class Main {

5 Main() {

6 var sock=new TCPSocket();

7 if (sock.Connect("yourhost.com", 22)) {

8 var session=SSHConnect(sock.Socket, var rc);

9 if (session) {

10 var key = SSHFingerprint(session);

11 // here you should check the key

12 if (!SSHAuth(session, "username", "password")) {

13 echo "Authentificated!\n";

14 var channel = SSHChannelOpen(session);

15 if (channel) {

16 echo "Channel created!\n";

17 if (!SSHShell(channel)) {

18 echo "Executed!\n";

19 // run a "ls" command

20 SSHWrite(channel, "ls\n");

21 echo SSHRead(channel, 0xFFFF, 0);

22 }

23 SSHChannelClose(channel);

24 }

25 } else

26 echo SSHLastErrorString(session);

27 SSHDisconnect(session);

28 }

29 sock.Close();

30 }

31 }

32 }

11.10. DNS AND GEOIP 343

yourhost.com should be replaced with a valid hostname running a SSH
server on port 22. username and password must be replaced with a valid
user name and password.

11.10 DNS and GeoIP

Every time a user connects to a named host, a DNS (Domain Name
System) server will be queried. It basically translates a host and service to
an IP address.

The DNS functions are defined in standard.net.dns import library.

There are only 3 functions that handle the entire DNS query process:

array DNSQuery (string name, class=ns c any, type=ns t any)
Looks for name host. class may be ns c in, ns c 2, ns c chaos,
ns c hs, ns c none or ns c any, and type ns t a , ns t ns, ns t md,
ns t mf, ns t cname, ns t soa, ns t mb, ns t mg, ns t mr, ns t null,
ns t wks, ns t ptr, ns t hinfo, ns t minfo, ns t mx, ns t txt, ns t rp,
ns t afsdb, ns t x25, ns t isdn, ns t rt, ns t nsap, ns t nsap ptr,
ns t sig, ns t key, ns t px, ns t gpos, ns t aaaa, ns t loc, ns t nxt,
ns t eid, ns t nimloc, ns t srv, ns t atma, ns t naptr, ns t kx,
ns t cert, ns t a6, ns t dname, ns t sink, ns t opt, ns t apl, ns t ds,
ns t sshfp, ns t rrsig, ns t nsec, ns t dnskey, ns t tkey, ns t tsig,
ns t ixfr, ns t axfr, ns t mailb, ns t maila, ns t any or ns t zxfr.
It returns an array containing the requested records.

array DNSResolve(string host)
Resolves the given host

string DNSReversed(string ip)
Performs a reversed query (returns the host by its ip).

The functions are IPv6 ready, and relatively straight forward:

import standard.net.dns

class Main {

Main() {

344 CHAPTER 11. SOCKETS AND NETWORKING

echo DNSQuery("www.google.com");

echo "\n===\n";

echo DNSReversed("8.8.8.8");

echo "\n===\n";

echo DNSResolve("www.google.ro");

}

}

Output:

Array {

[0] =>

Array {

[0,"type"] => A

[1,"host"] => www.google.com

[2,"addr"] => 173.194.35.177

}

[1] =>

Array {

[0,"type"] => A

[1,"host"] => www.google.com

[2,"addr"] => 173.194.35.176

}

[...]

}

===

google-public-dns-a.google.com

===

Array {

[0,"www.google.ro"] => 173.194.44.56

}

GeoIP is a IP/location database. It allows you to query an ip for location,
organization, connection speed and user type. The interface class is GeoIP,
defined in GeoIP.con.

include GeoIP.con

class Main {

function Main() {

var g=new GeoIP();

g.Open("GeoLiteCity.dat");

11.11. SNMP AND NETWORK MANAGEMENT 345

echo g.GetRecord("8.8.8.8");

}

}

Outputs:

Array {

[0,"country_code"] => US

[1,"country_code3"] => USA

[2,"country_name"] => United States

[3,"region"] => CA

[4,"city"] => Mountain View

[5,"latitude"] => 37.4192008972168

[6,"longitude"] => -122.057403564453

[7,"metro_code"] => 807

[8,"dma_code"] => 807

[9,"area_code"] => 650

[10,"charset"] => 0

[11,"continent_code"] => NA

}

Note, that you must first download the GeoIP database from
maxmind.com.

11.11 SNMP and network management

Simple Network Management Protocol (SNMP) is an ”Internet-standard
protocol for managing devices on IP networks”. Devices that typically
support SNMP include routers, switches, servers, workstations, printers,
modem racks and more. It is used mostly in network management systems
to monitor network-attached devices for conditions that warrant
administrative attention. SNMP is a component of the Internet Protocol
Suite as defined by the Internet Engineering Task Force (IETF).

SNMP itself does not define which information (which variables) a
managed system should offer. Rather, SNMP uses an extensible design,
where the available information is defined by management information
bases (MIBs). MIBs describe the structure of the management data of a
device subsystem; they use a hierarchical namespace containing object

346 CHAPTER 11. SOCKETS AND NETWORKING

identifiers (OID). Each OID identifies a variable that can be read or set via
SNMP.

The SNMP class, defined in SNMP.con handles the protocol using the
following members:

Handle : number property
Handle for low-level APIs

Error : string property
Returns the error description for the last executed operation

InitMIB ()
Inits the MIB subsystem

AddMIBDir (string dir)
Adds a MIB definition directory

array ReadMIB (string filename)
Reads a MIB file and returns an array describing the MIB

handle Open (string host, string community name=”public”,
snmp version=”1”)
Establishes a SNMP connection with the given host. On error
returns null.

array Read (array what, get next=false)
Reads data described by what and returns it as an array

array Walk (string target, string root=“”)
Walks through SNMP objects

Open ()
Closes the SNMP connection

The following example was tested on a router running RouterOS. You need
first to download the .mib file from your equipment manufacturer.

snmpexample.con

1 include SNMP.con

2

3 class Main {

11.11. SNMP AND NETWORK MANAGEMENT 347

4 function Main() {

5 var snmp=new SNMP();

6 snmp.InitMIB();

7 var data=snmp.ReadMIB("RouterOS.mib");

8 // print mib data

9 // echo snmp.ShowData(data);

10 snmp.Open("192.168.2.1", "public");

11 if (!snmp.Error) {

12 // This prints all child objects of

mtxrInterfaceStatsTable

13 echo snmp.Walk("mtxrInterfaceStatsTable");

14 echo snmp.Read(["DISMAN-EVENT-MIB::sysUpTimeInstance",

"system.sysContact.0",

"MIKROTIK-MIB::mtxrInterfaceStatsRxBytes.1"]);

15 var err = snmp.Error;

16 if (err)

17 echo err;

18 }

19 }

20 }

Partial output:

Array {

[0,"DISMAN-EVENT-MIB::sysUpTimeInstance"] => 226470600

[1,"SNMPv2-MIB::sysContact.0"] =>

[2,"MIKROTIK-MIB::mtxrInterfaceStatsRxBytes.1"] => 0

}

Both Walk and Read return key-value arrays.

Some manufacturers implement specific protocols. For example, Mikrotik,
has a proprietary operating system called RouterOS on most of its
equipments. Asides SNMP, it has some management APIs.

Concept Framework has a library called standard.net.routeros for
managing RouterOS-based systems. It implements 4 static functions:

ROSConnect (user, password, host ip, port=8728)
Connects to the specified Router OS API on the given ip and logs in
using user and password. On connection failed, returns -1. On
success returns a socket handle

348 CHAPTER 11. SOCKETS AND NETWORKING

ROSDisconnect (socket)
Closes the RouterOS API connection

ROSQuery (sock, array command)
Executes the specified command on the given RouterOS sock. For a
complete list of the supported commands, see the RouterOS wiki.
On success, returns 0.

ROSResult (sock)
Returns the results of the previous query as an key-value array

routerosexample.con

import standard.net.routeros

class Main {

Main() {

var sock=ROSConnect("username", "passowrd", "192.168.2.1");

if (sock>0) {

if (!ROSQuery(sock, ["/interface/print"])) {

// print the results

echo ROSResult(sock);

}

ROSDisconnect(sock);

}

}

}

Replace username and password with your credentials. The output should
be similar with:

Array {

[0] =>

Array {

[0] => 0

[1] => !re

[2,".id"] => *1

[3,"name"] => ether1-gateway

[4,"default-name"] => ether1

[5,"type"] => ether

[6,"mtu"] => 1500

[7,"l2mtu"] => 1598

[8,"max-l2mtu"] => 2028

11.11. SNMP AND NETWORK MANAGEMENT 349

[9,"mac-address"] => A4:8B:CD:CA:F1:EA

[10,"fast-path"] => true

[11,"rx-byte"] => 71641051794

[12,"tx-byte"] => 25713436046

[13,"rx-packet"] => 209931720

[14,"tx-packet"] => 55925380

[15,"rx-drop"] => 0

[16,"tx-drop"] => 0

[17,"rx-error"] => 0

[18,"tx-error"] => 0

[19,"running"] => true

[20,"disabled"] => false

}

[...]

[7] =>

Array {

[0] => 1

[1] => !done

}

}

Note that except element [0] (the return code), all of the values are strings.
The /interface/print command will return an array describing all network
interfaces on the RouterOS host.

standard.net.socket implements an ICMP(Internet Control Message
Protocol) Ping function.

array Ping(string host, count=1, timeout_ms=5000, message_size=32)

Note, that the Ping function works only when running as a superuser.

ping.con

import standard.net.socket

class Main {

Main() {

echo Ping("www.google.com");

}

}

350 CHAPTER 11. SOCKETS AND NETWORKING

Output:

Array {

[0,"reply"] =>

Array {

[0] =>

Array {

[0,"from"] => 92.87.156.99

[1,"bytes"] => 56

[2,"time"] => 16

[3,"TTL"] => 58

}

}

[1,"statistics"] =>

Array {

[0,"from"] => 92.87.156.99

[1,"sent"] => 1

[2,"received"] => 1

[3,"lost"] => 0

[4,"statistics"] => 0

}

}

Note that the result array is split in two sub-arrays, the “reply”,
containing the reply-data and the “statistics” sub-array.

Concept Framework also provides support for the Netflow protocol.
Netflow is a feature that was introduced on Cisco routers that give the
ability to collect IP network traffic as it enters or exits an interface. By
analyzing the data that is provided by Netflow a network administrator
can determine things such as the source and destination of the traffic, class
of service, and the cause of congestion. Netflow consists of three
components: flow caching, Flow Collector, and Data Analyzer11. Various
router manufactures are supporting this protocol, for example Cisco,
Alcatel-Lucent, Hawei, Enterasys, and Mikrotik. Also, Linux, BSD and
VMware servers support this feature.

The standard.net.flow import library implements two static functions:

array ParseNetflowPacket(string msg[, var templatehandle]);

DoneNetflowPacket(templatehandle);

11http://en.wikipedia.org/wiki/NetFlow on Febrary 12, 2014

11.11. SNMP AND NETWORK MANAGEMENT 351

ParseNetflowPacket will parse netflow v5 and v9 datagrams. For netflow
v9 packets the templatehandle parameter is mandatory. Netflow v9 is
based on templates, but the routers do not send the templates with each
packets. templatehandle is used internally by the ParseNetflowPacket to
keep a reference to a specific list of templates.

When using Netflow v9, a call to DoneNetflowPacket, if templatehandle is
not null, is mandatory to avoid a memory leak.

The following example will listen on the UDP port 2055 for netflow
packets.

1 include UDPSocket.con

2 import standard.net.flow

3

4 class Main {

5 Main() {

6 var t = new UDPSocket();

7 if (t.Bind(2055)) {

8 echo "Error in bind\n";

9 return -1;

10 }

11

12

13 while (true) {

14 try {

15 var msg = t.Read(var ip, var port);

16 var arr = ParseNetflowPacket(msg, var handle);

17 echo arr;

18 } catch (var exc) {

19 echo exc;

20 break;

21 }

22 }

23 DoneNetflowPacket(handle);

24 t.Close();

25 }

26 }

Output:

Array {

[0,"metadata"] =>

352 CHAPTER 11. SOCKETS AND NETWORKING

Array {

[0,"version"] => 5

[1,"flows"] => 1

[2,"uptime_ms"] => 275526500

[3,"time_sec"] => 361926

[4,"time_nanosec"] => 129450752

[5,"engine_type"] => 0

[6,"engine_id"] => 0

[7,"sampling_interval"] => 0

}

[1,"flows"] =>

Array {

[0] =>

Array {

[0,"IPV4_SRC_ADDR"] => 192.168.2.101

[1,"IPV4_DST_ADDR"] => 173.194.70.188

[2,"IPV4_NEXT_HOP"] => 89.41.248.1

[3,"INPUT_SNMP"] => 7

[4,"OUTPUT_SNMP"] => 1

[5,"IN_PKTS"] => 3

[6,"IN_BYTES"] => 120

[7,"FIRST_SWITCHED"] => 275496850

[8,"LAST_SWITCHED"] => 275510110

[9,"L4_SRC_PORT"] => 58929

[10,"L4_DST_PORT"] => 5228

[11,"pad1"] => 0

[12,"TCP_FLAGS"] => 4

[13,"PROTOCOL"] => 6

[14,"SRC_TOS"] => 0

[15,"SRC_AS"] => 0

[16,"DST_AS"] => 0

[17,"SRC_MASK"] => 0

[18,"DST_MASK"] => 0

[19,"pad2"] => 0

}

}

}

The ParseNetflowPacket function will parse both Netflow v5 and Netflow
v9 datagrams.

11.12. VIRTUALIZATION CLIENT 353

11.12 Virtualization client

Concept Framework is able to interact with multiple virtualization systems
by using libvirt12. libvirt is an open source API, daemon and management
tool for managing platform virtualization. It can be used to manage Linux
KVM, Xen, VMware ESX, QEMU and other virtualization technologies.
These APIs are widely used in the orchestration layer of hypervisors in the
development of a cloud-based solution13. libvirt functions are mapped via
the standard.lib.virt import library.

According to the libvirt website, the following systems are supported:

• The KVM/QEMU Linux hypervisor

• The Xen hypervisor on Linux and Solaris hosts.

• The LXC Linux container system

• The OpenVZ Linux container system

• The User Mode Linux paravirtualized kernel

• The VirtualBox hypervisor

• The VMware ESX and GSX hypervisors

• The VMware Workstation and Player hypervisors

• The Microsoft Hyper-V hypervisor

• The IBM PowerVM hypervisor

• The Parallels hypervisor

• The Bhyve hypervisor

• Virtual networks using bridging, NAT, VEPA and VN-LINK.

• Storage on IDE/SCSI/USB disks, FibreChannel, LVM, iSCSI, NFS
and filesystems

12See http://libvirt.org
13http://en.wikipedia.org/wiki/Libvirt on April 7th, 2014

354 CHAPTER 11. SOCKETS AND NETWORKING

For a simple example, connecting to a test service, consider the following
example:

1 import standard.lib.virt

2

3 class Main {

4 Main() {

5 var conn = virConnect("test:///default");

6 if (conn) {

7 echo virInfo(conn);

8 var arr=virListAllDomains(conn);

9 echo arr;

10 var id=arr[0]["uuid"];

11 var d=virDomainOpenUUID(conn, id);

12 // power on the first machine

13 virDomainCreate(d);

14

15 // show memory usage statistics

16 echo virDomainMemoryStats(d);

17

18 // create a snapshot

19 virDomainSnapshotCreate(d);

20

21 // list all saved snapshots

22 var arr2=virDomainSnapshotList(d);

23 for (var i=0;i<length arr2;i++)

24 echo virDomainSnapshot(d, arr2[i]);

25

26 // power off

27 virDomainShutdown(d);

28 // no longer referencing the domain

29 virDomainDone(d);

30 // close connection

31 virClose(conn);

32 } else

33 echo "Error connecting";

34 }

35 }

The output:

Array {

[0,"type"] => Test

[1,"version"] => 0.0.2

11.12. VIRTUALIZATION CLIENT 355

[2,"model"] => i686

[3,"memory"] => 3145728

[4,"cpus"] => 16

[5,"mhz"] => 1400

[6,"nodes"] => 2

[7,"sockets"] => 2

[8,"cores/socket"] => 2

[9,"threads/core"] => 2

} Array {

[0] =>

Array {

[0,"name"] => test

[1,"uuid"] => 6695eb01-f6a4-8304-79aa-97f2502e193f

[2,"id"] => 1

[3,"cpus"] => -1

[4,"os"] => linux

[5,"hostname"] =>

[6,"maxmemory"] => 8388608

[7,"maxvcpus"] => 2

[8,"active"] => 1

[9,"persistent"] => 1

[10,"updated"] => 0

}

}

standard.lib.virt implements the following functions: virError, virConnect,
virInfo, virClose, virNumOfActiveDomains, virNumOfInactiveDomains,
virListAllDomains, virDomainOpen, virDomainOpenUUID,
virDomainOpenName, virDomainDone, virDomainMemoryPeek,
virDomainShutdown, virDomainSetAutostart, virDomainDestroy,
virDomainSuspend, virDomainResume, virDomainUndefine,
virDomainReboot, virDomainCreate, virDomainCreateXML,
virDomainScreenshot, virDomainSendKey, virDomainOpenConsole,
virStreamClose, virStreamRead, virStreamWrite, virDomainGetCPUStats,
virDomainInterfaceStats, virDomainMemoryStats, virDomainBlockStats,
virDomainSnapshotCreate, virDomain, virDomainHasCurrentSnapshot,
virDomainSnapshotList, virDomainSnapshot,
virDomainRevertToSnapshot, virDomainSnapshotDelete,
virDomainSnapshotListChildren, virDomainManagedSave,
virDomainManagedSaveRemove, virDomainSave,
virDomainHasManagedSaveImage, virDomainGetJobInfo,
virDomainAttachDevice, virDomainBlockJobAbort, virDomainMigrate,

356 CHAPTER 11. SOCKETS AND NETWORKING

virConnectListStoragePools, virConnectListDefinedStoragePools,
virConnectListNetworks, virConnectListDefinedNetworks,
virNodeListDevices and virDebug.

The documentation for all of these functions may be found on
http://libvirt.org/, and will not be discussed in this book, the functions
being simply wrappers to the native C functions. This means that a libvirt
C function will be called from Concept using the same syntax.

However, Concept defines the following specific functions:

handle virConnect (connection string[,string username][,string
password][boolean read only=false])
Connects to a given host, using optional username/password. If
read only is set to true, the client will not be able to modify any
domain.
Connection strings may be:
QEMU:

qemu:///session (local access to per-user instance)

qemu+unix:///session (local access to per-user instance)

qemu:///system (local access to system instance)

qemu+unix:///system (local access to system instance)

qemu://example.com/system (remote access, TLS/x509)

qemu+tcp://example.com/system (remote, SASl/Kerberos)

qemu+ssh://root@example.com/system (remote, SSH tunnelled)

VMWare ESX:

vpx://example-vcenter.com/dc1/srv1

(VPX over HTTPS, select ESX server ’srv1’ in datacenter ’dc1’)

esx://example-esx.com

(ESX over HTTPS)

gsx://example-gsx.com

(GSX over HTTPS)

esx://example-esx.com/?transport=http

(ESX over HTTP)

esx://example-esx.com/?no_verify=1

(ESX over HTTPS, but doesn’t verify the server’s SSL

certificate)

A complete list can be found on the libvirt.org website.

11.12. VIRTUALIZATION CLIENT 357

virClose (connection handle)
Closes the given connection handle.

array virInfo (connection handle)
Retrieves information about the current connection (see the previous
example). The return is a key-value array, having the following keys:
type, version, model, memory, cpus, mhz, nodes, sockets,
cores/socket and threads/core.

virDomainDone (domain handle)
Frees the local memory associated with a a domain handle, as
returned by functions like virDomainOpen, virDomainOpenUUID or
virDomainOpenName.

number virDomainStreamWrite (stream handle, string buffer)
Writes buffer to a stream handle, as returned by
virDomainOpenConsole. Returns the number of bytes written, or -1
in case of error.

number virDomainStreamRead (stream handle, var buffer, number
size)
Reads at most size bytes into buffer from a stream handle, as
returned by virDomainOpenConsole.

virDomainStreamClose (stream handle)
Closes a stream handle.

array virError ()
Returns a key-value array describing the error in the last performed
operation. The used keys are: code, domain, level, message, str1,
str2, str3, int1 and int2. If no error occurred, it will return an empty
array.

virDebug (boolean on)
Sets the debug flag to on. If set to true, error information will be
printed to stderr.

array virDomain (domain handle)
Returns an key-value array describing the domain. The keys are:
name, uuid, id, cpus, os, hostname, maxmemory, maxvcpus, active,
persistent and updated.

More information may be found the libvirt.org website.

358 CHAPTER 11. SOCKETS AND NETWORKING

11.13 OAuth 2.0 and social media

Concept Framework provides the SocialAPI class, defined in
SocialAPI.con include file. This enables the development of Facebook,
Google and LinkedIn applications.

The OAuth 2.0 authorization framework enables a third-party application
to obtain limited access to an HTTP service, either on behalf of a resource
owner by orchestrating an approval interaction between the resource owner
and the HTTP service, or by allowing the third-party application to obtain
access on its own behalf14.

The SocialAPI class contains the following members

SocialAPI (string appid, string appsecret)
Create a SocialAPI object using the given appid (or client id) and
app secret (or client secret).

string FacebookLogin (string redirecturi, boolean encodeuri=true)
Returns the URL(as a string) to redirect the user for granting access
to a Facebook application. Note that redirecturi must be set to an
authorized address (in your Facebook app settings). If encodeuri is
set to true, the URL will be encoded, for example
http://somedomain.com will become
http%3A%2F%2Fsomedomain%2Ecom. If the user will grant access,
it will be redirected to the given redirecturi, with a code string
parameter, received as a GET request, that it will be used in the call
to GetFacebookAccess.

string GoogleLogin (string scope=“profile email”, string
extra parameters=“”, string redirecturi=“http://localhost”,
encodeuri=true)
Returns the URL(as a string) to redirect the user for granting access
to a Google application. Note that redirecturi must be set to an
authorized address (in your Google app settings). If encodeuri is set
to true, the URL will be encoded. The scope parameter, sets the
authorization scope. For example, for accessing user profile and list
of contacts, you may want to use “profile email
https://www.googleapis.com/auth/contacts.readonly”. See Google

14http://tools.ietf.org/html/rfc6749 as of August 19th, 2014

11.13. OAUTH 2.0 AND SOCIAL MEDIA 359

API documentation for a complete list of scopes. extra parameters
may contain additional GET parameters, for in the format
“parameter1=somevalue¶meter2=2”.

If the user will grant access, it will be redirected to the given
redirecturi, with a code string parameter, received as a GET request,
that it will be used in the call to GetGoogleAccess.

string LinkedInLogin (string scope=“”, string extra parameters=“”,
string redirecturi=“http://localhost”, encodeuri=true)
Returns the URL(as a string) to redirect the user for granting access
to a LinkedIn application. Note that redirecturi must be set to an
authorized address (in your LinkedIn app settings). If encodeuri is
set to true, the URL will be encoded.

It is identical with GoogleLogin in regards of the parameters,
returning instead a LinkedIn URL to redirect the user. For a
complete list of the scopes, check the LinkedIn Developer Network.

boolean GetFacebookAccess (string code, string redirec-
turi=“https://www.facebook.com/connect/login success.html”,
encodeuri=true)
Exchanges the code received by the redirecturi indicated by the
previous call to FacebookLogin with an access token needed for using
the Facebook API. Note that redirecturi parameter must be identical
with the one used in the call to FacebookLogin. If succeeded it
returns true, on error, false and sets LastError accordingly.

boolean GetGoogleAccess (string code, string
redirecturi=“http://localhost”)
Exchanges the code received by the redirecturi indicated by the
previous call to GoogleLogin with an access token needed for using
the Google API. Note that redirecturi parameter must be identical
with the one used in the call to GoogleLogin. If succeeded it returns
true, on error, false and sets LastError accordingly.

boolean GetLinkedInAccess (string code, string
redirecturi=“http://localhost”)
Exchanges the code received by the redirecturi indicated by the
previous call to LinkedInLogin with an access token needed for using
the LinkedIn API. Note that redirecturi parameter must be identical
with the one used in the call to LinkedInLogin. If succeeded it
returns true, on error, false and sets LastError accordingly.

360 CHAPTER 11. SOCKETS AND NETWORKING

boolean GetTwitterAccess ()
Access a twitter app. Note, that no user interaction is needed for
performing this call. Returns true if succeeded.

array FacebookAPI (string api, parameters=null, string
method=“GET”, var plain res=null)
Calls the given API, using parameters (a key-value array), using the
given method (GET—POST—PUT—DELETE). If plain res is
given, it will hold the actual unparsed server response. The call will
return a key-value array containing the requested data.

Note that this call may be made only after a successful call to
GetFacebookAccess.

array GoogleAPI (string api, parameters=null, string method=“GET”,
var plain res=null)
Calls the given API, using parameters (a key-value array), using the
given method (GET—POST—PUT—DELETE). If plain res is
given, it will hold the actual unparsed server response. The call will
return a key-value array containing the requested data.

Note that this call may be made only after a successful call to
GetGoogleAccess.

array LinkedInAPI (string api, parameters=null, string
method=“GET”, var plain res=null)
Calls the given API, using parameters (a key-value array), using the
given method (GET—POST—PUT—DELETE). If plain res is
given, it will hold the actual unparsed server response. The call will
return a key-value array containing the requested data.

array TwitterAPI (string api, parameters=null, string method=“GET”,
var plain res=null)
Calls the given API, using parameters (a key-value array), using the
given method (GET—POST—PUT—DELETE). If plain res is
given, it will hold the actual unparsed server response. The call will
return a key-value array containing the requested data. Note that this
call may be made only after a successful call to GetTwitterAccess.

array FetchJSON (string url)
Fetches the given url using a maximum of 10 redirects and returns
the data as an array (a parsed JSON).

11.13. OAUTH 2.0 AND SOCIAL MEDIA 361

string Fetch (string url)
Fetches the given url using a maximum of 10 redirects and returns
the data as a text buffer.

static array PicasaInfo (string username)
Returns information about a given a Picasa user as a key-value
array. Note that for this function no authorization is needed.

boolean InvalidateTwitterToken ()
Invalidates a Twitter access token. Note that this function must be
called after a successful call to GetTwitterAccess. Returns true if
succeeded.

public string AccessToken (read/write)
Holds the access token used for the API calls.

public string LastError (read/write)
Holds the text of the last error.

public number Expires (read)
Holds the session expire date as epoch time. If it is 0, the session will
never expire or no successful authorization was performed.

The call flow is:

1. new SocialAPI(CLIENT ID, CLIENT SECRET)

2. Request redirect link for the user with
SocialAPI.GoogleLogin(..redirecturi..)

3. Wait for a call to redirecturi with a code paramter (via GET
method). Set code=WebVar(“code”)

4. Exchange the code with an authorization token via
SocialAPI.GetGoogleAccess(code, redirecturi)

5. call SocialAPI.GoogleAPI(“/v1/plus/me”) or whatever API you’re
interested on.

A simple Concept UI application that allows in-app login to Facebook will
look something like this:

362 CHAPTER 11. SOCKETS AND NETWORKING

1 include SocialAPI.con

2

3 include Application.con

4 include RImage.con

5 include RForm.con

6 include RTreeView.con

7 include RWebView.con

8

9 define FBAPI "1463186XXXXXXXXX",

"XXXXd16cXXXXXXXX8310XXXXXXXa77XX"

10

11 class LoginWindow extends RForm {

12 public var WebView;

13

14 LoginWindow(Owner) {

15 super(Owner);

16 WebView = new RWebView(this);

17 WebView.Show();

18 }

19 }

20

21 class MainForm extends RForm {

22 var WebForm;

23 var treeContacts;

24 var fb;

25 var image;

26 var dummy_image;

27

28 public function MainForm(Owner) {

29 super(Owner);

30

31 this.treeContacts = new RTreeView(this);

32 this.treeContacts.Model = MODEL_LISTVIEW;

33 this.treeContacts.AddColumn("", IMAGE_COLUMN);

34 this.treeContacts.AddColumn("");

35 this.treeContacts.AddColumn("");

36 this.treeContacts.SearchColumn=1;

37 this.treeContacts.Show();

38

39 this.OnRealize=this.FBLogin;

40

41 image = new RImage(null);

42 dummy_image = new RImage(null);

43 dummy_image.Filename="res/dummy.png";

11.13. OAUTH 2.0 AND SOCIAL MEDIA 363

44

45 // create the social media object

46 fb=new SocialAPI(FBAPI);

47 }

48

49 public function FBLogin(Sender, EventData) {

50 WebForm = new LoginWindow(this);

51 WebForm.Show();

52 // get the social relocation address

53 WebForm.OpenString("<body>Sign in

with Facebook</s>");

54 // intercept navigation in RWebView

55 WebForm.WebView.OnNavigationRequested = this.OnRequest;

56 }

57

58 public function LoadUser(social, comments="") {

59 var arr=social.FacebookAPI("/me");

60 var name=arr["name"];

61

62 if (name) {

63 var target=dummy_image;

64 var photo_link=social.FacebookAPI("/$user/picture",

["type" => "square", "redirect"=>"false"]);

65 if (photo_link) {

66 var data=photo_link["data"];

67 if ((data) && (!data["is_silhouette"])) {

68 var url=data["url"];

69 var img_data=social.Fetch(url);

70 if (img_data) {

71 image.SetBuffer(img_data, "image.jpg");

72 target=image;

73 }

74 }

75 }

76 // add the contact to a tree view

77 this.treeContacts.AddItem([target, name, comments]);

78 }

79 }

80

81 public function OnRequest(Sender, EventData) {

82 if (Pos(EventData, "http://localhost")==1) {

83 var arr=StrSplit(EventData, "code=");

84 var code=""+StrSplit(""+arr[1], "#")[0];

85 WebForm.Hide();

364 CHAPTER 11. SOCKETS AND NETWORKING

86 // extract code and request access token

87 if (fb.GetFacebookAccess(code, "http://localhost"))

88 this.LoadUser(fb, "This is you");

89 else

90 CApplication.MessageBox(fb.LastError);

91 } else

92 // if not our redirect, allow navigation

93 WebForm.WebView.URI=EventData;

94 }

95 }

96

97 class Main {

98 Main() {

99 try {

100 var Application=new CApplication(new MainForm(NULL));

101 Application.Init();

102 Application.Run();

103 Application.Done();

104 } catch (var Exception) {

105 //echo Exception.Information;

106 }

107 }

108 }

Assuming that a valid FBAPI constant was defined, this application will
extract the user photo and name and show them in a row in treeContacts.

The model is identical for Google and LinkedIn (just the api parameters
are different).

The minimal Twitter application access example:

1 include SocialAPI.con

2

3 class Main {

4 Main() {

5 var g=new SocialAPI("m4XXXXXXXXXXXXXXXXXXXXXXX",

"XXXXXXXXXXXA2XXXXXXXXXXXQXXXXXXXXXXAlDXXXXXXXXXXXX");

6 if (g.GetTwitterAccess()) {

7 echo

g.TwitterAPI("/1.1/statuses/user_timeline.json?screen_name=charliesheen");

8 // invalidate session

9 g.InvalidateTwitterToken();

10 }

11.14. UPGRADING CONCEPT:// TO TLS/SSLV3 365

11 }

12 }

For advanced Twitter API, see documentation of the Twitter class (defined
in Twitter.con).

11.14 Upgrading concept:// to TLS/SSLv3

Starting with version Concept Client 3.0 and Concept Server 3.0,
concept:// and concepts:// protocols, are supporting TLS and SSLv3
sockets.

Note that when using the concepts secured protocol, the data transported
by the TLS socket will be encrypted both by the secure socket and concept
secured protocol. This is done purely for backwards compatibility and does
not necessary mean a more secure method of data transfer. concepts
protocol is similar with TLS in architecture, but it only uses RSA keys,
instead of X.509 certificates15, issued by trusted certificate authorities.

Each concept(s):// application must have its own certificate, using as
domain the server application path. You can generate your own self-signed
certificate, by using OpenSSL.

First, you must generate a root certificate authority, as it folows:

openssl genrsa -out rootCA.key 4096

openssl req -new -x509 -nodes -key rootCA.key -out rootCA.crt -days

36500

The the actual certificate (using a 4096-bit key):

openssl genrsa -out privatekey.pem 4096

openssl req -new -key privatekey.pem -out publickey.cer

openssl x509 -req -in publickey.cer -CA rootCA.crt -CAkey

15In cryptography, X.509 is an ITU-T standard for a public key infrastructure
(PKI) and Privilege Management Infrastructure (PMI). X.509 specifies, amongst
other things, standard formats for public key certificates, certificate revocation
lists, attribute certificates, and a certification path validation algorithm. (source:
http://en.wikipedia.org/wiki/X.509 on September 6th, 2014)

366 CHAPTER 11. SOCKETS AND NETWORKING

Figure 11.3: Untrusted certificate prompt

rootCA.key -CAcreateserial -out publickey.cer -days 365

For more documentation about openssl, check https://www.openssl.org.

This will offer you untrusted certificates, that will encrypt the data over
the network, but the user will be notified about the untrusted certificate,
as seen in figure 11.3.

The actual connection must be upgraded in two steps. The first step
consists of notifying the client to upgrade to TLS using
CApplication::Upgrade(mode) API:

boolean Upgrade(mode=TLS_STRICT);

Where mode may be:

TLS STRICT
This is the default option. Accepts only trusted and valid certificates,
disabling the “Continue” option for the user as show in figure 11.4.

TLS ACCEPT UNTRUSTED

11.14. UPGRADING CONCEPT:// TO TLS/SSLV3 367

Figure 11.4: Mismatched certificate prompt, with no continue option

Allows the user to choose if the untrusted, expired or mismatched
certificate to be used, as show in figure 11.3.

TLS SUPPORTED
Do not upgrade the connection, just check if is TLS/SSLv3 is
supported.

CApplication::Upgrade(mode) returns true if TLS/SSLv3 is supported, or
false if not.

The second step is to upgrade the server connection using the static
UpgradeTLS API (defined in win32.base.messages):

number UpgradeTLS(string cert_file, string private_file);

cert file is the public key (certificate) and private file is the private key file.
UpgradeTLS return 1 if succeeded, -2 if TLS/SSL is not supported on the
server, -3 if the used certificate is invalid or 0 if the SSL engine or socked
failed from any other reason.

You can get trusted certificates from lots of places, starting with
Devronium Applications, the company developing Concept Application

368 CHAPTER 11. SOCKETS AND NETWORKING

Server to VeriSign.

The simplest concept:// TLS/SSLv3 application is show in the example
below.

simple tls app.con

include Application.con

include RForm.con

include RLabel.con

class MyForm extends RForm {

MyForm(parent) {

super(parent);

var infoLabel = new RLabel(this);

switch (ConceptProtocolSecured()) {

case 0:

infoLabel.Caption = "concept:// protocol without TLS

is used";

break;

case 1:

infoLabel.Caption = "concepts:// protocol without TLS

is used";

break;

case 2:

labinfoLabelel.Caption = "concept:// protocol WITH

TLS is used";

break;

case 3:

infoLabel.Caption = "concepts:// protocol WITH TLS is

used";

break;

}

infoLabel.Show();

}

}

class Main {

function Main() {

try {

if (CApplication::Upgrade()) {

if (UpgradeTLS("./cert/publickey.cer",

"./cert/privatekey.pem")==1) {

var Application=new CApplication(new

MyForm(NULL));

11.14. UPGRADING CONCEPT:// TO TLS/SSLV3 369

Application.Init();

Application.Run();

Application.Done();

}

} else

CApplication::Message("Please upgrade your

Concept Client");

} catch (var Exception) {

echo Exception;

}

}

}

Note concept protocol TLS upgrade may not be supported on some
platforms.

370 CHAPTER 11. SOCKETS AND NETWORKING

Chapter 12

Multi-threading

Concept Core supports basic multi-threading. The core itself is optimized
for speed, but if you need to share data between threads, the thread-safe
version of the core should be used. On Microsoft Windows is located into
the Concept/bin directory, and is named concept.core.X.Y.MT.dll, on
other operating systems is usually in
/usr/local/lib/libconceptcore.X.Y.MT (multiple files). For running all the
applications on a server on the multi-threaded version, the standard
versions of the concept core (the ones without the MT suffix) should be
replaced with the MT version. For example, on MS Windows, you can
replace concept.core.X.Y.dll with concept.core.X.Y.MT.dll(by renaming
the MT version). Note that Concept Server must be shut down in order to
allow you to replace the dynamic library.

For running only some applications on the MT core, you can create a
.manifest file requesting the core to use the MT version. For example, if a
program is called test.con, a file named test.con.manifest should be created
in the same directory with test.con. The contents of the .manifest file
should look like this:

test.con.manifest

[Application]

Multithreading = 1

For CLI programs, you can use the -mt parameter, for example:

371

372 CHAPTER 12. MULTI-THREADING

concept -mt test.con

When explicitly running with the -mt parameter, no manifest is needed.

You should note that the MT version is slower than the non-threaded
version due to use of semaphores in the Concept Core. A programmer can
use its own semaphores, and then use the standard core version, having
both speed and safe data sharing between threads, but this is not
recommended, because of the explicit management of resources and
variable access.

Note that all the threads run on the same process, and sharing variables
between them is not an issue. Just be sure to use semaphores, to avoid
consistency problems or writing violations. All the threading and
semaphore functions are defined in standard.lib.thread.

Note that all threading examples should be run on the MT version of the
Concept Core. It will run on the standard core version, but it may be
prone to crash due to lack of variable access core semaphores.

Multi-threading may have a small negative impact of the JIT ability to run
native code on the given machine, because the need for semaphores.
However functions and loops using only local variables will be run with no
problem.

In practice, I recommend you use background queues in external processes
or a fixed number of reusable threads for doing the background work.

Note that some of the Concept static libraries may create background
threads. For example, the standard.net.opal (SIP protocol) creates two or
three concept threads. If you use this library, even if no threads are
created from your application, the MT version of the core should be used.

12.1 Multi-threading and core limitations

Creating a thread is relatively straight forward. Concept has a simple,
cross-platform threading mechanism based on only 4 functions:

12.1. MULTI-THREADING AND CORE LIMITATIONS 373

RunThread (delegate thread function, detached=false)
Creates a thread and returns its identifier as a strictly positive
number. On error will return 0 or a negative value. The detached
flag is set to true, you can’t use WaitThread on it. If detach is set to
false, and you don’t call WaitThread, a memory leak will occur.

WaitThread (number thread identifier)
Waits for the thread identified by thread identifier to end. This
function always return 0. Note that this function should not be used
on detached threads. On Windows platforms it will work, but on
POSIX threads will not.

KillThread (number thread identifier)
Forcefully ends a thread. This function should not be used, because
it may generate unpredictable results. The correct way of ending a
thread is by exiting the thread function via a return statement.

Sleep (number milliseconds)
Causes the current thread to sleep for the given milliseconds.

On the Concept MT Core, all member variables use an internal semaphore
for access, in order to avoid concurrent writes. This has some speed
penalty, but the core remains reasonable fast. When the core detects that
the thread count is 1 (only the main thread), it doesn’t uses the semaphore
anymore, being only a little slower than the standard non-threaded version.

Most of the Concept Framework is thread safe, however, you should avoid
setting or getting properties for the UI objects outside the main
thread. It will work, but it can generate some inconsistency with the
objects. For example, two threads may simultaneously read the same
property, but reading the property produces some consequences, for
example, when getting an image from an web cam. Is difficult to know
which frame to which thread will end up.

For every non-detached thread (default), a corresponding call to
WaitThread must be made.

A simple multi-threading program:

1 import standard.lib.thread

2

3 class Main {

374 CHAPTER 12. MULTI-THREADING

4 foo() {

5 for (var i=0; i<10 ;i++)

6 echo "$i;";

7 }

8

9 Main() {

10 var[] threads;

11 for (var i=0; i<10; i++)

12 threads[i]=RunThread(this.foo);

13

14 // allow the threads to finish

15 for (i=0; i<8; i++)

16 WaitThread(threads[i]);

17 }

18 }

The output:

0;1;2;3;0;0;0;0;0;0;0;0;0;4;1;1;1;1;1;1;1;1;1;5;2;2;2;2;2;

2;2;2;2;6;3;3;3;3;3;3;3;3;3;7;4;4;4;4;4;4;4;4;4;8;5;5;5;5;

5;5;5;5;5;9;6;6;6;6;6;6;6;6;6;7;7;7;8;9;7;7;7;7;8;8;7;7;8;

8;8;8;9;9;8;8;9;9;9;9;9;9;

The threads should be used only for background computations. Also, note
that most database drivers are thread safe, but may generate
unpredictable results when simultaneous queries are made from various
threads, so you should always make your data queries from the same
thread or use semaphores to avoid simultaneously sending multiple
commands on the same connection.

You could use the InterApp messaging system to synchronize your threads
with the main UI thread. Just send messages to the same application, by
using SendMessage(GetAPID(), 101, ”Thread finished”). Remember that
InterApp only works for concept:// application (it doesn’t work for console
applications).

The fullowing example computes the sum of the first 1,000,000 natural
numbersby using 100 threads. Each thread computes the sum for a set of
10,000 numbers. This example must be run via CAS root and Concept
Client, with the Concept MT core.

12.1. MULTI-THREADING AND CORE LIMITATIONS 375

multithreadingexample.con

1 import standard.lib.thread

2 include Application.con

3 include RLabel.con

4 import standard.lib.thread

5

6 class ThreadData {

7 var start;

8 var end;

9

10 ThreadData(start, end) {

11 this.start = start;

12 this.end = end;

13 }

14

15 Run() {

16 // get current APID

17 var apid = GetAPID();

18 var result = 0;

19 for (var i=start; i<end; i++)

20 result += i;

21

22 // send result as a string

23 SendAPMessage(apid, 1, ""+result);

24 }

25 }

26

27 class MainForm extends RForm {

28 var label;

29 // add the last number (note i<1000000)

30 // this means that 1000000 will not be actually

31 // added

32 var sum = 1000000;

33 var threads = 0;

34

35 MainForm(owner) {

36 super(owner);

37 label = new RLabel(this);

38 label.Caption = "Computing sum(0,1,..,1000000)";

39 label.Show();

40

41 for (var i = 0; i<1000000 ; i+=10000) {

42 var t = new ThreadData(i, i+10000);

43 // don’t wait for the thread

376 CHAPTER 12. MULTI-THREADING

Figure 12.1:

44 RunThread(t.Run, true);

45 }

46 }

47

48

49 OnInterAppMessage(SenderAPID, MSGID, Data) {

50 if (MSGID == 1) {

51 threads++;

52 sum += value Data;

53 label.Caption = "The sum is now $sum ($threads threads

ended)";

54 }

55 }

56 }

57

58 class Main {

59 Main() {

60 try {

61 var mainform=new MainForm(null);

62 var Application=new CApplication(mainform);

63 Application.ShellDebug=mainform.OnInterAppMessage;

64 Application.Init();

65 Application.Run();

66 Application.Done();

67 } catch (var Exception) {

68 CApplication::Message(Exception, "Uncaught exception",

MESSAGE_ERROR);

69 }

70 }

71 }

The output is shown in figure 12.1.

12.2. SEMAPHORES 377

Note that as per-CPU core basis, is more efficient to process all the data in
a single thread than to compute in multiple threads. The multi-thread
computation approach is somehow efficient on multi-core/multi-CPU
systems, when the number of threads is somehow less or equal than the
core count.

The previous example is highly inefficient, because the actual thread
creations and APID message routing time surpass the time needed for
adding 10,000 natural numbers.

As a conclusion, you should only use threads where is really needed.
Threads are great for background computations or in server applications,
for managing client communication. However, for basic UI applications
there is rarely a need for multiple threads. Unless you’re creating a game,
a server, a computation intensive application, real-time communications
like VoIP, or you need to create child processes that need to be monitored,
you should not need to create a thread.

12.2 Semaphores

When using shared variables between threads, a semaphoring mechanism
is included in Concept Framework, for ensuring read/write consistency.
This mechanism is additional to the Concept Core internal semaphores.

A semaphore has two operations: P and V. The P operation wastes time
or sleeps until a resource protected by the semaphore becomes available, at
which time the resource is immediately claimed. The V operation is the
inverse: it makes a resource available again after the process has finished
using it.

You could see P as a lock attempt and V as a release. Is important that
each P operations has a corresponding V operation in the same thread.

Semaphores are defined in standard.lib.thread import library.

semcreate ()
Creates a new semaphore. Returns the semaphore handle as a
number.

semdone (number semaphore handle)

378 CHAPTER 12. MULTI-THREADING

Destroys a semaphore.

seminit (number semaphore handle, number val)
Initializes a semaphore to the given value

semp (number semaphore handle)
Performs a P operation on the semaphore (tries a lock or waits until
the resource becomes available)

semv (number semaphore handle)
Performs a V operation on the semaphore (releases the lock on the
resource, making the resource avialable)

Alternatively you could use the simpler class ReentrantLock:

Lock ()
Tries a lock or waits until the resource becomes available

Unlock ()
Tries a lock or waits until the resource becomes available

The lockings are useful when you must ensure that a variable value won’t
change in a critical step. For example, when adding a constant to a
variable, first the variable value is read and then the sum is performed,
and then, the result is stored back to the variable. This is a critical step,
since another thread can modify the value between the add operation and
the final assignment, causing inconsistency.

1 include ReentrantLock.con

2

3 class Main {

4 var semaphore;

5 var sum;

6

7 foo() {

8 // ensure sum won’t be changed

9 semaphore.Lock();

10 sum = sum + 1000;

11 semaphore.Unlock();

12 }

13

14 Main() {

12.2. SEMAPHORES 379

15 semaphore = new ReentrantLock();

16 var[] threads;

17 for (var i=0 ;i<10; i++)

18 threads[i]=RunThread(this.foo);

19

20 // allow the threads to finish

21 for (i=0; i<8; i++)

22 WaitThread(threads[i]);

23 echo sum;

24 }

25 }

When running multiple threads, the ReentrantLock will be almost surely
necessary to ensure the data in correctly synchronized. Note that when
using the InterApp message subsystem, semaphores are not needed,
because the message received callback is run in a loop in the main thread.

The same example can be rewritten to use the low level APIs.

1 import standard.lib.thread

2

3 class Main {

4 var semaphore;

5 var sum;

6

7 foo() {

8 // ensure sum won’t be changed

9 semp(semaphore)

10 sum = sum + 1000;

11 semv(semaphore)

12 }

13

14 Main() {

15 semaphore = semcreate();

16 seminit(semaphore, 1);

17 var[] threads;

18 for (var i=0 ;i<10; i++)

19 threads[i]=RunThread(this.foo);

20

21 // allow the threads to finish

22 for (i=0; i<8; i++)

23 WaitThread(threads[i]);

24 echo sum;

25 semdone(semaphore);

380 CHAPTER 12. MULTI-THREADING

26 }

27 }

However, the ReentrantLock class is recommended.

12.3 Green threads

Beside native threads, Concept also supports green threads. These are
light weight (minimum overhead) threads that are scheduled by the
Concept Core instead of the operating systems. These threads have many
advantages and/or disadvantages. Note that this kind of threads may be
used safely under the standard core, not needing the multi-threaded
version of Concept.

The advantages are:

Creation time
Hundreds of thousands green thread may be created in up to a
couple of seconds

No need for semaphores
They are scheduled by the Concept Core, there is no need for
semaphores, the Core ensuring that each and every operation is
atomic.

Minimal memory overhead
Green threads use only a few bytes for each thread. For example,
100,000 green threads use about 17MB of memory on a 32-bit system
and up to 22MB on a 64-bit server.

Faster than native threads
Concept uses internal semaphores to ensure consistency when
running native threads. This is making the MT core slower than the
standard core. Green threads, not needing synchronization, run
without any problems on the standard core, making them
significantly faster.

The disadvantages are:

12.3. GREEN THREADS 381

Using just one CPU core
Green threads are running using just one core (unlike native threads
that are using all the available cores). This may be solved by using
by mixing native threads with green threads.

All threads may block if a single thread is blocking
Special attention is required for blocking operations, for example
socket read. If a socket is performing a blocking read (waiting for
data) in a green thread, all the threads in the given queue will block.
Blocking operations should be avoided in this case.

Green threads are logic threads, without no physical native threads
behind. As with any APIs it should be used for the right problem, for
example, strategy games, in which each gaming entity will have a
corresponding green thread.

The Greenloop class, defined in Greenloop.con provides APIs for creating
and running green threads. It implements the following members:

Greenloop

number Run(array delegates)
Runs the given delegates (as an array) in a green thread loop. It
returns 0 on success, non-zero on error.

number Add(delegate thread)
Adds a thread to a queue while the loop is running. It returns 0 on
success, or non-zero on error.

static number Go(array delegates)
Static version, of run (avoiding creating a new object).

Note that all green threads must catch their exceptions. An uncaught
exception will cause loop termination.

The following example will create three green threads: greenHello.con

1 include Greenloop.con

2

3 class Main {

4 Green1() {

5 for (var i = 0; i < 3; i++)

382 CHAPTER 12. MULTI-THREADING

6 echo "${@member} iteration $i\n";

7 }

8

9 Green2() {

10 for (var i = 0; i < 3; i++)

11 echo "${@member} iteration $i\n";

12 }

13

14 Green3() {

15 for (var i = 0; i < 3; i++)

16 echo "${@member} iteration $i\n";

17 }

18

19 Main() {

20 var g=new Greenloop();

21 if (g.Run([this.Green1, this.Green2, this.Green3]))

22 echo "Error creating green loop";

23 }

24 }

The output:

Green1 iteration 0

Green2 iteration 0

Green3 iteration 0

Green1 iteration 1

Green2 iteration 1

Green3 iteration 1

Green1 iteration 2

Green2 iteration 2

Green3 iteration 2

Note that the Main function could be replaced with the code bellow,
resulting in the same output.

Main() {

if (Greenloop::Go([this.Green1, this.Green2, this.Green3]))

echo "Error creating green loop";

}

A green thread may add additional threads by using the Add method.

12.3. GREEN THREADS 383

greenHello2.con

1 include Greenloop.con

2

3 class Main {

4 var g;

5

6 Green1() {

7 // dynamically create a thread (Green3)

8 g.Add(this.Green3);

9

10 for (var i = 0; i < 3; i++)

11 echo "${@member} iteration $i\n";

12 }

13

14 Green2() {

15 for (var i = 0; i < 3; i++)

16 echo "${@member} iteration $i\n";

17 }

18

19 Green3() {

20 for (var i = 0; i < 3; i++)

21 echo "${@member} iteration $i\n";

22 }

23

24 Main() {

25 g=new Greenloop();

26 if (g.Run([this.Green1, this.Green2]))

27 echo "Error creating green loop";

28 }

29 }

The output:

Green1 iteration 0

Green3 iteration 0

Green2 iteration 0

Green1 iteration 1

Green3 iteration 1

Green2 iteration 1

Green1 iteration 2

Green3 iteration 2

Green2 iteration 2

384 CHAPTER 12. MULTI-THREADING

Note the slightly different execution order (Green1, Green3, Green2).
When a thread is added, it will be queued just after the parent thread.

Green threads are compiled by the JIT core at the first run, for
performance reasons. In some cases, if no JIT exit condition is reached, for
example, a function call, member access or an echo call, an explicit JIT
exist must be performed.

For example:

badGreen.con

1 include Greenloop.con

2

3 class Main {

4 Green1() {

5 var i = 1;

6 while (i) {

7 i++;

8 }

9 }

10

11 Green2() {

12 echo "This is never called";

13 }

14

15 Main() {

16 if (Greenloop::Go([this.Green1, this.Green2]))

17 echo "Error creating green loop";

18 }

19 }

This will run forever, and Green1 will never give a chance to Green2 to
execute. This can be fixed by adding an explicit call to yield (a dummy
function).

1 include Greenloop.con

2

3 class Main {

4 Green1() {

5 var i = 1;

6 while (i) {

7 i++;

12.3. GREEN THREADS 385

8 // Give a chance to other threads to execute

9 yield();

10 }

11 }

12

13 Green2() {

14 echo "This gets called eventually";

15 }

16

17 Main() {

18 if (Greenloop::Go([this.Green1, this.Green2]))

19 echo "Error creating green loop";

20 }

21 }

Will output:

This gets called eventually

Note that it is not mandatory to call yield, unless there is no function call
or object member access.

If Green1 is defined as:

Green1() {

var i = 1;

while (i) {

// dummy operation

i += sin(i);

}

}

No call to yield is needed, because sin will actually provide the core the
opportunity to switch to the next thread.

In practice, the context switching is made when a JIT exit is encountered,
or a loop structure ends (for, do..while or while) for performance reasons.

386 CHAPTER 12. MULTI-THREADING

12.4 Workers

Another alternative to native threads, is the Concept Worker. This special
native threads run in a different application context, inside the same
process. A worker cannot access the application run-time objects, to avoid
the synchronization overhead. Instead, it uses a message exchange system.
When green threads cannot be used (eg. blocking calls), workers are a
better idea than native threads. Note that for worker threads, you can use
the standard concept core (no need for using the multi-threaded core).

For creating a Worker you need to first include Profiler.con.

Worker (string classname, string parameter = “”)
Constructs a Worker, creating a object of classname using the given
parameter. Parameter is useful for initialization data. If it is not
needed, should be set to an empty string

number IsActive ()
Returns true if the worker is active, false if it ended or -1 in case of
error.

Join ()
Waits for the current worker to finish.

Exit ()
Forcefully ends a thread. Note, this function should be avoided,
because it may cause memory leaks.

number AddData (string)
Adds data to the worker queue. This function should be used by the
host application to send data to the worker. Returns the number of
items in the queue, including the current one.

number GetResult (var string result)
Gets the data from the worker queue. This function should be used
by the host application to get the results from the worker. Returns
the number of items in the queue, including the current one. If no
data is available, it will return 0. If the return is non-zero, result will
contain the data from the worker.

static number Pending (var string data)

12.4. WORKERS 387

Gets the next data in queue. This function should be called by the
worker. It returns the number of queued elements. If the return is
non-zero, it will set data to the given string buffer (set by the
application via AddData)

static number Result (var string result)
Adds a result in the result queue. This function should be called by
the worker. It returns the number of queued results. The application
will read the result by using the GetResult function.

Note that all Get* functions will remove data from the queue. Also, the
Worker destructor will call Join, so be sure to notify the Worker when the
applications is done.

The following example will create the simplest worker:
simpleWorker.con

1 include Worker.con

2

3 class A {

4 A(x) {

5 // x is "Hello world !";

6 echo "$x\n";

7 while (true) {

8 if (Worker::Pending(var data)) {

9 if (data == "Done") {

10 echo "Bye !";

11 return;

12 }

13 echo "RECEIVED: $data\n";

14 // set the result

15 Worker::Result("ECHO $data\n");

16 } else {

17 // give the CPU a chance to do something else

18 Sleep(1);

19 }

20 }

21 }

22 }

23

24 class Main {

25 Main() {

26 // create

388 CHAPTER 12. MULTI-THREADING

27 var w = new Worker("A", "Hello world !");

28 for (var i = 0; i < 10; i++) {

29 w.AddData("Hello $i !");

30 while (!(var idx = w.GetResult(var data)))

31 Sleep(1);

32 echo "$idx: " + data;

33 }

34 w.AddData("Done");

35 }

36 }

The output:

Hello world!

Worker received: Hello 0 !

Worker replied: Hello to you too!

Worker received: Hello 1 !

Worker replied: Hello to you too!

Worker received: Hello 2 !

Worker replied: Hello to you too!

Worker received: Hello 3 !

Worker replied: Hello to you too!

Worker received: Hello 4 !

Worker replied: Hello to you too!

Worker received: Hello 5 !

Worker replied: Hello to you too!

Worker received: Hello 6 !

Worker replied: Hello to you too!

Worker received: Hello 7 !

Worker replied: Hello to you too!

Worker received: Hello 8 !

Worker replied: Hello to you too!

Worker received: Hello 9 !

Worker replied: Hello to you too!

Bye !

Using a hybrid application with both green threads and workers,
eliminates completely the need for the native threads.

Remember that data cannot be directly shared between workers and
parent thread. For complex data structures serialization may be used, as
shown in the next example:

12.4. WORKERS 389

advancedWorker.con

1 include Worker.con

2 include Serializable.con

3

4 define OPERATION_BYE 1

5 define OPERATION_ADD 2

6 define OPERATION_DONE 3

7

8 class Message extends Serializable {

9 var op;

10 var data;

11

12 Message(data = "", op = OPERATION_ADD) {

13 this.data = data;

14 this.op = op;

15 }

16 }

17

18 class Student {

19 var Name;

20 var Grade;

21

22 Student(Name = "", Grade = "") {

23 this.Name = Name;

24 this.Grade = Grade;

25 }

26 }

27

28 class ChildWorker {

29 WriteStudentToDatabase(student) {

30 // pretend we write to the database

31 echo "INSERT INTO student(name, grade) VALUES

(’${student.Name}’, ’${student.Grade}’);\n";

32 }

33

34 ChildWorker(init) {

35 while (true) {

36 // wait for a message

37 if (Worker::Pending(var data)) {

38 var msg = Message::UnSerialize(data, true);

39 if (!msg)

40 break;

41

42 switch (msg.op) {

390 CHAPTER 12. MULTI-THREADING

43 case OPERATION_BYE:

44 // exit this worker

45 return;

46 case OPERATION_ADD:

47 WriteStudentToDatabase(msg.data);

48 msg.op = OPERATION_DONE;

49 Worker::Result(msg.Serialize(""));

50 break;

51 }

52 } else

53 Sleep(1);

54 }

55 }

56 }

57

58 class Main {

59 Main() {

60 var w = new Worker("ChildWorker");

61 w.AddData((new Message(new Student("Michael",

"A+"))).Serialize(""));

62 w.AddData((new Message(new Student("Andrew",

"B-"))).Serialize(""));

63 w.AddData((new Message(new Student("John",

"A"))).Serialize(""));

64

65 // wait for 3 messages

66 var messages = 3;

67 while ((w.IsActive()) && (messages)) {

68 if (w.GetResult(var result)) {

69 messages--;

70 var msg = Message::UnSerialize(result, true);

71 if (msg.op == OPERATION_DONE)

72 echo "Successfully written ${msg.data.Name} into

the database\n";

73 }

74 }

75 w.AddData((new Message("", OPERATION_BYE)).Serialize(""));

76 w.Join();

77 }

78 }

The output:

INSERT INTO student(name, grade) VALUES (’Michael’, ’A+’);

12.5. PARALLEL COMPUTING USING GPU 391

INSERT INTO student(name, grade) VALUES (’Andrew’, ’B-’);

Successfully written Michael into the database

INSERT INTO student(name, grade) VALUES (’John’, ’A’);

Successfully written Andrew into the database

Successfully written John into the database

Avoid creating a number of workers greater than number of CPU cores
times number of threads per core on the machine. Creating too many
threads on any machine, will make your application run slower. When a
large number of threads is needed, I recommend using a few workers and
lots of green threads.

The use of workers is strongly encouraged when dealing with blocking
calls. Keep in mind that workers are lightweight, and have no speed
penalty, in contrast with native threads, which will run at about 3/4, and
possibly even slower for recursive function calls, compared to the single
thread concept core.

12.5 Parallel computing using GPU

Concept is able to run code in GPU’s. A GPU(graphics processing unit) is
a specialized electronic circuit designed to rapidly manipulate and alter
memory to accelerate the creation of images in a frame buffer intended for
output to a display. Modern GPUs are very efficient at manipulating
computer graphics, and their highly parallel structure makes them more
effective than general-purpose CPUs for algorithms where processing of
large blocks of data is done in parallel. In a personal computer, a GPU can
be present on a video card, or it can be on the motherboard or-in certain
CPUs-on the CPU die1.

A GPU high performance in parallel computations, makes it ideal for a set
of problems that can be parallelized, especially in sorting, AI or
NP-complete problems. It is important to chooses to use parallel
computation when is actually needed and some significant performance
increase can be gain. As a note, the GPUs usually use a different memory
space than CPUs, resulting frequent data copy between CPU memory and
GPU memory.

1http://en.wikipedia.org/wiki/Graphics processing unit, March 17, 2014

392 CHAPTER 12. MULTI-THREADING

Concept provides the Parallel class, defined in Parallel.con for handling
parallel computations. Note that not every Concept function may be
parallelized. A function (called entry-point function) must meet the
following conditions in order to qualify for parallelization:

1. A function must create no class objects.

2. If a function creates an internal array, it must statically refer the last
element of the array, in order for the compiler to statically create an
array of the required size.

3. It is recommended that all function parameters are declared by type.
If not, Concept Core will try to guess the parameters type.

4. Non-homogeneous arrays are not permitted. Only static strings and
number arrays are allowed. Matrices must be transformed into linear
vectors.

5. Parameters must be either in or out. It cannot be both. All out
parameters, regardless of their type, must be declared with var.

6. Operators like typeof, classof and value are not allowed.

7. A function may refer only members of the current class (this). The
referenced member must only return number values.

8. Recursion is not allowed.

9. A function may call another function only using number parameters
and bridge arrays. A bridge array is an array that was given as a
parameter from the entry-point function (the first function
parallelized).

10. Except math static functions, ord and chr, no static function call is
allowed.

11. The entry-point function return value is ignored. However, a function
called by the entry point function may return a number value.

12. Real numbers are limited to float (32 bit), instead of Concept double
precision (64 bit).

13. Division by zero will not generate a run-time error.

12.5. PARALLEL COMPUTING USING GPU 393

14. try/throw/catch statements are ignored and should not be used.

15. string and array concatenation is not allowed.

16. the [] operator, when used both in strings and array may reference
just one character, respectively just one number. Expressions like
str[1] = “abc” are not allowed.

17. echo will not work on NVIDIA GPUs.

18. Every entry-point function must have the first parameter defined as a
number, must not be a reference. The actual function parameters
must follow this parameter.

As a note, it is not mandatory to run the parallel computing application as
multi-threaded.

I’ve implemented this interface to be trivial, and easy to use and
understand by any developer. The parallel interface is implemented over
OpenCL (but could be changed to Nvidia CUDA APIs without changing
the Concept APIs).

Consider the following example:

1 include Parallel.con

2 import standard.lib.str

3

4 class Main {

5 foo(workindex, string in, var string out) {

6 out[workindex] = chr(ord(in[workindex]) + 1);

7 }

8

9 Main() {

10 try {

11 var str = "Hello World!";

12 var res = __gpu (foo, [str, str]);

13 // output parameter is on the second position

14 echo res[1];

15 } catch (var exc) {

16 echo exc;

17 }

18 }

19 }

394 CHAPTER 12. MULTI-THREADING

You probably noted the gpu call. This is a macro (identical with
parallel), that will simply call:

1 define __gpu Parallel::Go

2 define __parallel Parallel::Go

3

4 Parallel::Go(delegate d, array parameters);

This is the synchronous interface of the parallel computation APIs. The d
parameter is the function that needs to be parallelized and run, and the
parameters are the function parameters (note that the workindex
parameter must be skipped). For output parameters (in this case out),
only an array of the required size must be given, regardless of its contents.
This function will return an array, containing the output values. In our
example, the out string is on the second position of the array, because is
the second parameter in the function call.

The same function can be run asynchronously by using:

1 include Parallel.con

2

3 class Main {

4 foo(workindex, string in, var string out) {

5 // for parallel code, we can skip chr/ord for

6 // strings. In parallel mode all strings

7 // are regarded as number arrays

8 out[workindex] = in[workindex] + 1;

9 }

10

11 Main() {

12 try {

13 var str = "Hello World!";

14

15 var[] res;

16 var p = new Parallel();

17 if (p.Use(foo, var err)) {

18 p.Run([arr, arr]);

19 DoSomeTimeConsumingStuff();

20 // get the results from the last call

21 res = p.Join();

22 echo res[1];

23 p.Unload();

24 }

12.5. PARALLEL COMPUTING USING GPU 395

25 } catch (var exc) {

26 echo exc;

27 }

28 }

29 }

For understanding the workindex parameter, let’s see the same code
written as standard code:

1 include Parallel.con

2 import standard.lib.str

3

4 class Main {

5 foo(workindex, string in, var string out) {

6 out[workindex] = chr(ord(in[workindex]) + 1);

7 }

8

9 Main() {

10 var str = "Hello World!";

11 var out = str;

12 for (var workindex = 0; workindex < length str; workindex++)

13 foo(workindex, str, out);

14 echo out;

15 }

16 }

workindex is simply the iteration, int the last example, and in the previous
example, is the parallel thread and/or iteration number.

In either cases, the output is:

Ifmmp!Xpsme"

A parallel function may also call functions defined in the current class:

1 include Parallel.con

2 import standard.C.time

3 import standard.C.math

4

5 class Main {

6 var member=1;

7

396 CHAPTER 12. MULTI-THREADING

8 foo2(array in, i) {

9 return this.foo3(in, i);

10 }

11

12 foo3(array in, i) {

13 return sqrt(in[i]);

14 }

15

16 foo(workindex, array in, var out) {

17 // you can even reference members in the

18 // current class

19 // Note that this.member value will be linked

20 // statically at compile time. It its value

21 // will change, it won’t be reflected in the GPU

22 var test = [0, this.member, 2, 3, 4];

23 for (var i=1; i<100000; i++)

24 out[workindex] += sin(foo2(in, test[3]));

25 }

26

27 Main() {

28 try {

29 var arr = new [];

30 // ensure that we have 1000 elements in the array

31 // this step is extremely important, otherwise

32 // the core will not be able to estimate the

33 // array length

34 arr[999] = 0;

35 var result = __gpu (foo, [arr, arr]);

36 var output = result[1];

37 echo output;

38 } catch (var exc) {

39 echo exc;

40 }

41 }

42 }

The gpu calls will recompile the Concept byte code into OpenCL source
or byte code. This way, a programmer will use only one programming
language. You may also use functions like get global id, get local id,
get global size, get local size, get work dim, get num groups, get group id
or barrier. See OpenCL documentation for a complete list of functions.

Chapter 13

Media, voice over IP and
telephony

Concept Frameworks provides import libraries for image processing like:
win32.graph.freeimage (portable, not related to MS Windows),
standard.graph.svg (SVG support), standard.graph.svgt (SVG tiny
support), standard.graph.imagemagick (multiple image formats supoport),
standard.lib.poppler (PDF support), standard.lib.face (face detection) and
standard.lib.ocr (Optical Character Recognition).

About two years ago I’ve started an Internet telephony project, and
decided to put all the reusable code I’ve used into Concept Framework.
Then, I decided to add support for high-compression codecs like Speex and
later Opus, and SIP protocol support via standard.net.opal or
OPALSIP.con. Speex and Opus are supported both on the Concept Client
and CAS. This makes CAS a great solution for real-time communications.

The mobile version of Concept Client is highly optimized for VoIP,
enabling jitter-free calls on the concept:// protocol, with optional UDP
support. Also, basic DRM (Digital Rights Management) is supported for
VoIP or audio applications.

397

398 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

Figure 13.1:
OPUS codec comparison

13.1 Codecs

Concept supports two highly optimized codecs: Speex and Opus.

Speex is an Open Source/Free Software patent-free audio compression
format designed for speech. There are lots of VoIP applications, servers
and hardware supporting Speex. However, Speex is obsoleted by Opus.

Opus is a totally open, royalty-free, highly versatile audio codec. Opus is
unmatched for interactive speech and music transmission over the Internet,
but is also intended for storage and streaming applications. It is
standardized by the Internet Engineering Task Force (IETF) as RFC 6716.
Opus can handle a wide range of audio applications, including Voice over
IP, videoconferencing, in-game chat, and even remote live music
performances. It can scale from low bit-rate narrowband speech to very
high quality stereo music. See figure 13.11.

Note that not all the codecs are supported with every client version. You

1Source: http://opus-codec.org/comparison/ as shown on January 23, 2014

13.1. CODECS 399

can check the supported codecs by querying the client via
CApplication.Query :

var codecs=CApplication.Query("Codecs", false);

If codecs is empty, it means that only Speex is supported (desktop
version). On mobile version, codecs are returned as a string, separated by
“;”. For example:

Speex;Opus;DRM

All Concept Client mobile version support both Speex and Opus. Some
desktop versions support only Speex (but recent version will also support
Opus and DRM).

The remote audio is managed via the OCV/RAudioStream.con class (will
be discussed in the next section).

On the CAS a set of four classes manage the compression/decompression
of voice packages. For Speex, the SpeexEncoder and SpeexDecoder, both
defined in SpeexEncoded.con, using the following interfaces:

SpeexEncoder:

BitsHandle : number property
Gets the bits handle to be used with the low-level APIs

StateHandle : number property
Gets the state handle to be used with the low-level APIs

SampleRate : number property
Sets the sample rate in Hz (default 16000)

FrameSize : number property (read-only)
Gets the Speex frame size

Encode (string buffer, var chunk size=null)
Encodes the buffer. Chunk size is the Speex encoded chunk size.
Returns the encoded Speex buffer.

Reset ()
Resets the internal audio buffer

400 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

SpeexEncoder:

BitsHandle : number property
Gets the bits handle to be used with the low-level APIs

StateHandle : number property
Gets the state handle to be used with the low-level APIs

SampleRate : number property
Sets the sample rate in Hz (default 16000)

Quality : number property
Sets the encoder quality, with 0 the lowest, 10 the highest. The
output buffer will use more bytes with higher quality. Default is 5
(medium-low quality). A value of 8 should provide a balance between
quality and used bandwidth.

FrameSize : number property (read-only)
Gets the Speex frame size

Encode (string buffer, var chunk size=null)
Encodes the buffer. Chunk size will be set to the Speex encoded
chunk size. Returns the encoded Speex buffer.

Reset ()
Resets the internal audio buffer

SpeexDecoder:

BitsHandle : number property
Gets the bits handle to be used with the low-level APIs

StateHandle : number property
Gets the state handle to be used with the low-level APIs

SampleRate : number property
Sets the sample rate in Hz (default 16000)

FrameSize : number property (read-only)
Gets the Speex frame size

13.1. CODECS 401

Decode (string buffer, var chunk size=28)
Decodes the buffer. Chunk size is the Speex encoded chunk size.
Returns the decoded Speex buffer as 16 bit PCM.

Note that Speex will remain active in the Concept Framework (will not be
deprecated), but the use of Opus is recommended. Opus is a general-use
codec, suitable for both speech and music, offering a higher compression
than Speex while having a better quality.

Opus has a similar interface with Speex. It has the OpusEncoder and
OpusDecoder, both defined in Opus.con

OpusEncoder:

Bitrate : number property
Sets the maximum bitrate to be used, in bits (default is 9000). It is
similar to Speex’ Quality parameter, but instead of a pre-defined
value, the actual bit rate can be set.

Signal : number property
Sets the signal type. Default is OPUS AUTO, but may be changed
to OPUS SIGNAL VOICE or OPUS SIGNAL MUSIC.

Bandwidth : number property
Sets the voice bandwidth type (not the network). Default is
OPUS AUTO, but may be changed to
OPUS BANDWIDTH NARROWBAND,
OPUS BANDWIDTH MEDIUMBAND,
OPUS BANDWIDTH WIDEBAND,
OPUS BANDWIDTH SUPERWIDEBAND or
OPUS BANDWIDTH FULLBAND.

OpusEncoder (samplerate=16000, channels=1,
type=OPUS APPLICATION VOIP)
The constructor for OpusEncoder. samplerate is in hz, channels is
the number of channels (1 for mono) and type is the application type.
May also be: OPUS APPLICATION AUDIO,
OPUS APPLICATION RESTRICTED LOWDELAY.

Encode (string buffer, var out size=null)
Encodes the buffer. out size will be set to the output encoded size in
bytes. Returns the encoded Opus buffer.

402 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

OpusDecoder:

SampleRate : number property (read-only)
Gets the sample rate in Hz

OpusDecoder (samplerate=16000, channels=1)
The constructor for OpusEncoder. samplerate is in hz and channels
is the number of channels (1 for mono).

Decode (string buffer)
Decodes the given Opus encoded buffer. Returns the decoded buffer
as 16 bit PCM data.

Note that both Opus and Speex import libraries implement g711 codecs
for compatibility. See the Concept Framework documentation for
standard.lib.opus for more information.

OpusEncodeDecodeExample.con

1 import standard.arch.opus

2 import standard.C.io

3

4 include Opus.con

5

6 class Main {

7 Main() {

8 var enc = new OpusEncoder(8000);

9 var dec = new OpusDecoder(8000);

10

11 var s=ReadFile("sample.raw");

12 var len = length s;

13 var opus_data = "";

14 var pcm_decoded_data = "";

15

16 for (var i=0;i<len;i+=320) {

17 // get 160 samples (16 bits: 160 bytes * 2)

18 var d = SubStr(s, i, 320);

19 if (length d == 320) {

20 // encode the data

21 var out = enc.Encode(d);

22 // decode the data

23 var out2 = dec.Decode(out);

24 opus_data += out;

13.2. TELEPHONY AND SIP INTEGRATION 403

25 pcm_decoded_data += out2;

26 }

27 }

28 WriteFile(opus_data, "out.opus");

29 WriteFile(pcm_decoded_data, "out.raw");

30 }

31 }

Note that for this example you need a file named sample.raw containing
raw 16 bit, mono PCM data. For a file about 200kB, you should get an
out.opus file of about 14kB.

The data from the Speex and Opus encoders are raw, as output by the
encoders. It has no additional package or meta-data information
associated. This task is up to the programmer.

13.2 Telephony and SIP integration

The Session Initiation Protocol (SIP) is a signaling communications
protocol, widely used for controlling multimedia communication sessions
such as voice and video calls over Internet Protocol (IP) networks.

The protocol defines the messages that are sent between peers which
govern establishment, termination and other essential elements of a call.
SIP can be used for creating, modifying and terminating sessions consisting
of one or several media streams. SIP can be use for two-party (unicast) or
multiparty (multicast) sessions. Other SIP applications include video
conferencing, streaming multimedia distribution, instant messaging,
presence information, file transfer, fax over IP and online games.2.

For all SIP-based applications, the multi-threaded version of the core must
be used (MT Core). The use of the non-threaded core, may cause crashes
(refer to the Multi-threading section).

The SIP client class is OPALSIP, defined in OPALSIP.con. The OPALSIP
interface is based on Open Phone Abstraction Library (OPAL), a C++
multi-platform, multi-protocol library for Fax, Video & Voice over IP and

2Source: http://en.wikipedia.org/wiki/Session Initiation Protocol on January 23, 2014

404 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

other networks3.

Note that OPALSIP will create additional backgorund threads.

OPALSIP properties:

Quality number property
Sets the Speex codec quality. This is used in relation with the
Concept RAudioStream object, not with SIP layer itself.

Bitrate number property
Sets the Opus codec maximum bitrate. This is used in relation with
the Concept RAudioStream object, not with SIP layer itself.

Samplerate number property
Sets the sample rate (default 8000)

ConceptCodec number property
Sets the codec. May be CODEC SPEEX(default) or CODEC OPUS.
This is used in relation with the Concept RAudioStream object, not
with SIP layer itself.

LocalRTPPort number property (default 10002)
Sets the UDP port to be used for RTP streams

PortLimit number property (default 10)
Sets the UDP port interval. For example, if LocalRTPPort cannot be
bound, the system will try to bind LocalRTPPort+1, +2 ... +10
before reporting an error.

MaxBuffer number property (default 500)
Sets the maximum buffer in milliseconds. When the buffer is over
that value, it will be automatically cut to reduce jitter.

FrameSize number property (default 20)
Sets the audio frame size in milliseconds.

STUNServer string property
Sets a STUN server address. STUN (Session Traversal Utilities for
NAT) is a standardized set of methods and a network protocol to

3http://www.opalvoip.org/

13.2. TELEPHONY AND SIP INTEGRATION 405

allow an end host to discover its public IP address if it is located
behind a NAT4.

Username string property
Sets the SIP username

Password string property
Sets the SIP password

LocalIP string property
Sets the local IP (tells the SIP server to send the messages to the
given IP)

ProxyHost string property
Sets the host of the SIP server.

Codec number property (default RTP PCMA)
Sets the RTP codec. May also be: RTP PCMU, RTP G721,
RTP G726, RTP GSM, RTP G722, RTP G728 and other values.
Check OPALSIP documentation for a complete list. Note that the
code will be negotiated with the host.

Answered boolean property
Is set to true if the current call (invite request) was answered.

Incoming boolean property
Is set to true if the current call is incoming.

OPALSIP events:

OnDTMF (string character)
Called when a DTMF character (0123456789*#) is received.

OnEndCall (string target, number reason)
Called when a call ends. reason is the call end code. See SIP
specification for a list with all codes.

OnCall (string target)
Called when an incoming call is received. target describes the calling
user.

4http://en.wikipedia.org/wiki/STUN on January 23, 2014

406 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

OnVoice (string buffer, number payload size)
Called when a voice packet was received. It is encoded using
ConceptCodec. The buffer is the encoded data (Speex or Opus), and
payload size is the data size.

OnRinging (string target)
Called when an outgoing call was successfully initiated and the other
party reported “Ringing”. target describes the other party.

OnRegister (number dummy)
Called when successfully registered with the SIP proxy.

OnAnswer (string target)
Called when the an outgoing call is answered. target describes the
other party. target describes the other party.

OnConnect (caller)
Called when a the SIP proxy successfuly connects with the remote
party.

OnAdjustBuffer ()
Called when the internal buffer is too big and must be reset. If this
event returns true, the buffer will be reset to frac13 of its actual size.

OPALSIP methods:

ResetBuffer ()
Resets the internal buffer

Write (string buffer, number chunk size)
Writes Speex or Opus-encoded data (depending on ConceptCodec
value). Internally, the buffer is decoded and converted into the
negotiated SIP codec.

Reject ()
Rejects or hangs up the current call

RejectCall ()
Rejects the current incoming call

Answer ()
Answers the current incoming call

13.2. TELEPHONY AND SIP INTEGRATION 407

Transfer (string user)
Transfers the current call to another user and/or host.

Forward (string user)
Forwards the current unanswered incoming call to another user
and/or host.

SendTone (string character)
Sends the given DTMF single tone (0123456789*#)

Hold ()
Puts the current call on hold.

Hangup ()
Hangups the current answered call

Register (number timeout=1000)
Register to the SIP proxy using the Username and Password
properties. Timeouts is the register retry timeout in milliseconds
(not the actual register timeout).

Unregister ()
Unregisters from the current SIP proxy

Call (string user)
Initiates a call to the given user (with optional host).

array GetCodecs ()
Gets a list of all SIP supported codecs and returns it as an array of
strings

SetCodecs (array order)
Sets the list of codecs (an array of strings). The codec on the first
position (order[0]) has the maximum priority.

The simplest SIP client is shown in the following example:

1 include OPALSIP.con

2

3 class Main {

4 var sip;

5

6 OnEndCall(call, reason) {

7 echo "End call: $reason\n";

408 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

8 }

9

10 OnRinging(to) {

11 echo "Ringing $to\n";

12 }

13

14 OnCall(to) {

15 echo "Call: $to\n";

16 }

17

18 Main() {

19 sip=new OPALSIP();

20 sip.Username = "yoursipusername";

21 sip.Password = "passowrd";

22 sip.ProxyHost = "sip.somehost.net";

23 sip.Register();

24 sip.OnEndCall = OnEndCall;

25 sip.OnRinging = OnRinging;

26 sip.OnCall = OnCall;

27 // optinally, set the preferred codecs for the SIP connection

28 sip.SetCodecs(["G.711-ALaw-64k", "G.711-uLaw-64k"]);

29 echo sip.GetCodecs();

30 sip.Register();

31 Sleep(1000);

32 echo "Call:";

33 // if working with a Soft Switch

34 echo sip.Call("123456789");

35 // or

36 // echo sip.Call("username@host.org");

37 // wait 2.5 seconds, then end the call

38 Sleep(2500);

39 echo "Reject:";

40 echo sip.Reject();

41 }

42 }

Replace yoursipusername, password and sip.somehost.net with your
username, password and SIP proxy host.

Note that the OPALSIP class can work directly with RAudioStream client
class. This means that the audio stream is automatically converted to
Speex or Opus, and the forwarded to the RAudioStream object. This is
done via the OPALSIP.OnVoice event and OPALSIP.Write method.

13.2. TELEPHONY AND SIP INTEGRATION 409

The RAudioStream class, defined in OCV/RAudioStream.con provides
access to the remote client microphone and speakers.

RAudioStream members:

SampleRate number property
Sets the sample rate, in Hz (default 44100).

Bitrate number property
Sets the bitrate to use with Opus codec (default is 9000)

Channels number property
Sets the channel number. Note that Speex will only work with
Channels set to 1.

Compression number property
Sets the codec. Set it to 0 for plain PCM 16 bit data (not
recommended), USE SPEEX or USE OPUS (recommended).

MaxBuffer number property (default 0)
Sets the maximum buffer count without resetting the internal buffer
to avoid jitter. If set to 0, the property will be ignored

FrameSize number property
Sets the audio frame size in milliseconds (default 20).

DRM boolean property
If set to true, both the playback and recorded data will be encrypted
using the key returned by DRMKey(). The encryption is AES-128
CBC. Note that DRM encrypting may not be supported on all
platforms.

event OnBuffer (RAudioObject Sender, string buffer)
This event is called for every received audio buffer, encoded
accordingly to Compression property, after a successfully call to
Record(). If DRM is set to true, the buffer is also encrypted using
AES-128 CBC and DRMKey() as a key.

Record (number device id=-1)
Starts recording on the client using the given device id. If set to -1, it
will use the first available recording device.

410 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

Play (number device id=-1)
Starts playback on the client using the given device id. If set to -1, it
will use the first available playback device. AddSmallBuffer

AddSmallBuffer (string buffer)
Adds a buffer for playback, encoded accordingly to Compression
property. If DRM is set to true, the buffer must be encrypted using
AES-128 CBC and DRMKey() as a key. It optimizes network traffic
for buffer smaller than 0x9FFF. For other bigger than that, the call
will fail.

AddBuffer (string buffer)
Non-optimized version of AddSmallBuffer. The use of
AddSmallBuffer is encouraged.

AddBigBuffer (string buffer)
Similar to AddSmallBuffer, but allows multiple buffers. The use of
AddSmallBuffer is encouraged.

Stop ()
Stops the current playback/recording

Note that you cannot call Play and Record simultaneous on the same
object.

If you want to simply play a sound on the remote host, you may also use
RemoteAudio, define in RemoteAudio.con.

include RemoteAudio.con

[..]

RemoteAudio::Go("res/hello.mp3");

[..]

The hello.mp3 must exist and be located in the concept application
directory, in a subdirectory called “res”.

Both RemoteAudio and RAudioStream can only be used in concept://
applications (Concept Client-based).

include RemoteAudio.con

include OPALSIP.con

[..]

13.2. TELEPHONY AND SIP INTEGRATION 411

MainForm(owner) {

super(owner);

[..]

this.Codec = USE_SPEEX;

var codecs=ToLower(CApplication.Query("Codecs", false));

// check if Opus codec is supported

// note the ToLower modifier. Codec names sjould be

// case insensitive

if (Pos(codecs, "opus")>0)

Codec=USE_OPUS;

raudio_out = new RAudioStreamer(this);

raudio_out.SampleRate = 8000;

raudio_out.Channels = 1;

raudio_out.MaxBuffers=10;

raudio_out.Compression=Codec;

raudio_in = new RAudioStreamer(this);

raudio_in.OnBuffer = this.onConceptClientBuffer;

raudio_in.Channels = 1;

raudio_in.Quality = 9;

raudio_in.Compression = Codec;

raudio_in.SampleRate = raudio.SampleRate;

SIP = new OPALSIP();

SIP.OnVoice = this.onSIPBuffer;

[..]

}

[..]

onAnswerButtonPressed(Sender, EvnetData) {

// assume we have a button to press to answer a call

raudio_in.Record();

raudio_out.Play();

}

onHangupButtonPressed(Sender, EvnetData) {

// assume we have a button to press to answer a call

SIP.Reject();

raudio_in.Stop();

raudio_out.Stop();

}

412 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

onSIPBuffer(string buffer, number chunk_size) {

// note that this function will NOT be called in the main

loop

// the call will originate from an OPALSIP thread

SendAPMessage(GetAPID(), 101, buffer);

}

OnInterAppMessage(Sender, MSGID, data) {

if (MSGID == 101) {

// buffer received from another thread

if (length data<0x9FFF)

raudio.AddSmallBuffer(data);

else

raudio.AddBuffer(data);

}

}

onConceptClientBuffer(Sender, buffer) {

if (this.Codec == USE_SPEEX) {

// ignore fist byte (the buffers count)

buffer++;

// speex buffers received from the client

// have chunk_size on the second byte

var chunk_size = ord(buffer[0]);

// make buffer start from the next character

buffer++;

SIP.Write(buffer, chunk_size);

} else {

// its simpler with Opus

SIP.Write(buffer, length buffer);

}

}

[..]

The example only illustrates the concepts behind OPALSIP and
RAudioStream. For a complete VoIP (without SIP) example, check the
OpenConference in the Concept distribution’s Samples directory.

Note that RAudioStream is highly optimized in mobile version of Concept
Client (Android and iOS), enabling you to create VoIP applications that
use only the concept:// protocol, both for voice and UI.

Concept also supports basic DTMF recognition by using the

13.3. DIGITAL RIGHTS MANAGEMENT 413

DTMFDetector class.

DetectDTMF.con

include RAudioStream.con

include DTMFDetector.con

include RForm.con

define APPLICATION_FORM_TYPE MainForm

class MainForm extends RForm {

var audio;

var decoder;

public function MainForm(Owner) {

super(Owner);

audio = new RAudioStreamer(this);

audio.Compression = false;

audio.Channels = 1;

audio.SampleRate = 8000;

audio.OnBuffer = function(Sender, EventData) {

decoder.AddBuffer(EventData);

var b = decoder.Buttons;

if ((b) && (b != label1.Caption))

label1.Caption = b;

};

decoder=new DTMFDetector();

audio.Record();

}

}

13.3 Digital rights management

Concept Framework provides a simple DRM (Digital Rights Management)
engine to provide secure audio data exchange between CAS and Concept
Client. This is simply done by setting the RAudioStream.DRM property
to true.

The actual rights settings are up to the programmer. The DRM system

414 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

ensures a secured packet exchange with a secure symmetric key, negotiated
between the Concept Client and CAS. The used algorithm is AES 128
CBC, and the key is returned by the DRMKey().

The DRM engine can be also used for secured concept:// Voice over IP
applications.

include OPALSIP.con

import standard.lib.cripto

[..]

InitDRM(owner) {

var DKey = DRMKey();

if (DKey) {

if (context_in)

AESRelease(context_in);

if (context_out)

AESRelease(context_out);

context_in = AESDecryptInit(DKey);

context_out = AESEncryptInit(DKey);

}

}

onSIPBuffer(string buffer, number chunk_size) {

var buffer=AESEncrypt(context_out, buffer, BLOCKMODE_CBC,

true);

[..]

}

onConceptClientBuffer(Sender, buffer) {

buffer = AESDecrypt(context_in, buffer, BLOCKMODE_CBC, true);

[..]

}

[..]

Apart calling AESEncrypt and AESDecrypt, the rest of the API calls
remain exactly the same as the non-DRM version. If DRM is set to 2
instead of true (1), then the BLOCKMODE ECB shall be used.

13.4. IMAGE AND VIDEO PROCESSING 415

13.4 Image and video processing

Concept has a few image processing import libraries. The most used is
win32.graph.freeimage, the most advanced is standard.graph.imagemagick
and the most useful is standard.graph.svg.

The freeimage import library is based on the FreeImage project (open
source). The “win32” prefix exists for backwards-compatibility only, the
library being portable and working on most operating systems.

It can modify, resize, rotate or convert an image from and to usual
formats. It has lots of APIs. For a complete list, check the Concept
Framework Documentation.

FreeImageResizeExample.con

1 import win32.graph.freeimage

2 import standard.C.io

3 import standard.lib.str

4

5 class Main {

6 static GenerateThumb(string image_name, string thumb_name,

number max_w=300, number max_h=200, string

img_type=FIF_JPEG, number crop=true) {

7 var type = FreeImage_GetFileType(image_name);

8 image_type = ToLower(image_type);

9 if (type < 0)

10 return false;

11 var hBitmap = FreeImage_Load(type, image_name, 0);

12 if (!hBitmap)

13 reuturn false;

14 var true_width = FreeImage_GetWidth(hBitmap);

15 var true_height = FreeImage_GetHeight(hBitmap);

16 if ((true_width <= max_w) && (true_height <= max_h)) {

17 if (!FreeImage_Save(img_type, hBitmap, thumb_name, 0)) {

18 FreeImage_Unload(hBitmap);

19 return false;

20 }

21 FreeImage_Unload(hBitmap);

22 return true;

23 }

24 var aspect_ratio = 1;

25 if ((!true_width) || (!true_height)) {

416 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

26 FreeImage_Unload(hBitmap);

27 return false;

28 }

29 var coef_w = max_w / true_width;

30 var coef_h = max_h / true_height;

31 if ((crop) && (true_height > max_h) && (true_width > max_w))

{

32 var p_a_ratio = true_width / true_height;

33 var t_a_ratio = max_w / max_h;

34 if (p_a_ratio != t_a_ratio) {

35 var new_height = true_height;

36 var new_width = true_width;

37 if (coef_h>coef_w)

38 new_width = true_height * t_a_ratio;

39 else

40 new_height = true_width / t_a_ratio;

41 if (new_width > true_width)

42 new_width = true_width;

43 if (new_height > true_height)

44 new_height = true_height;

45 var left = (true_width-new_width) / 2;

46 var right = true_width-left;

47 var top = (true_height-new_height) / 2;

48 var bottom = true_height-top;

49

50 var hBitmap3 = FreeImage_Copy(hBitmap, left, top,

right, bottom);

51 if (hBitmap3) {

52 FreeImage_Unload(hBitmap);

53 hBitmap = hBitmap3;

54 hBitmap3 = null;

55 true_width = new_width;

56 true_height = new_height;

57 coef_w = max_w/true_width;

58 coef_h = max_h/true_height;

59 }

60 }

61 }

62 if (coef_w<coef_h)

63 aspect_ratio *= coef_w;

64 else

65 aspect_ratio *= coef_h;

66 if (aspect_ratio > 1)

67 aspect_ratio = 1;

68

13.4. IMAGE AND VIDEO PROCESSING 417

69 var hBitmap2 = FreeImage_Rescale(hBitmap, true_width *

aspect_ratio, true_height * aspect_ratio, 0);

70

71 FreeImage_Unload(hBitmap);

72 if (hBitmap2) {

73 if (!FreeImage_Save(img_type, hBitmap2, thumb_name, 0)) {

74 FreeImage_Unload(hBitmap2);

75 return false;

76 }

77 }

78 FreeImage_Unload(hBitmap2);

79 return true;

80 }

81

82 Main() {

83 GenerateThumb("test.jpg", "thumb.png", 100, 100, FIF_PNG);

84 }

85 }

The previous example resize a JPG to 100x100 pixels, converts it to PNG
format and performs a crop operation. In practice avoid writing such
functions performing multiple operations, because debugging can become
difficult.

The same task can be done by using the more powerful
standard.graph.imagemagick import library. In addition, it provides image
creation APIs, not just manipulation.

MagickExample.con

1 import standard.graph.imagemagick

2 import standard.C.io

3

4 class Main {

5 function Main() {

6 var w=NewMagickWand();

7 var img=MagickReadImage(w, "test.png");

8 if (!img) {

9 echo MagickGetException(w, var sev);

10 return -1;

11 }

12 // We could resize the image:

13 // MagickResizeImage(w, 32, 32, 0, 1);

418 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

14 var draw=NewDrawingWand();

15 // you could get a list with all the available font with

16 // var fonts_arr = MagickQueryFonts("*");

17 DrawSetFont(draw, "test.ttf");

18 DrawSetFontSize(draw, 50);

19 MagickAnnotateImage(w, draw, 50, 250, -15, "A cool

butterfly");

20 MagickWriteImage(w, "test2.png");

21 WriteFile(MagickGetImageBlob(w),"test3.png");

22 DestroyMagickWand(w);

23 }

24 }

Assuming that we have test.ttf and test.png in the application directory,
the output may look like figure 13.2.

Figure 13.2:
MagickExample.con

Concept has support for SVG files. Scalable Vector Graphics (SVG) is an
XML-based vector image format. The standard.graph.svg implements just
one static functions:

string SVG(string svg_buffer, type="png", dpi=-1, var error=null);

13.4. IMAGE AND VIDEO PROCESSING 419

The input is the SVG file content (XML), the output is the image buffer,
in the format specified by type. If given, the error will contain the parsing
error.

Two concept classes generate SVG output: LineChart, defined in
LineChart.con and PieChart, defined in PieChart.con.

RandomLineChart.con

1 include LineChart.con

2

3 import standard.C.io

4 import standard.graph.svg

5

6 class Main {

7 function Main() {

8 var data=new [];

9 // first line: the series names

10 data[0]=["Series 1", "Series 2"];

11 // row format: point name, series1 value, ..., seriesN value

12 // int32 rounds a double to a value that could be contained

13 // in an 32 bit signed integer

14 for (var i=0;i<150;i++)

15 data[length data]=["val"+int32(i/10), rand(), rand()];

16

17 var svg=LineChart::Do(data, 1000, 300, 1, 2, "white");

18 // save the SVG output

19 WriteFile(svg, "out.svg");

20 // save output as PNG

21 WriteFile(SVG(svg), "out.png");

22 }

23 }

The output will be similar with 13.3.

The standard.graph.svgt implements Tiny SVG, a lightweight version of
SVG, also implementing just one static function:

string SVGT(string svgt_buffer, number scale=1.0);

However, you should avoid using SVGT in favor of SVG. SVGT should be
used only on embedded devices, where the SVG overhead is considered to

420 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

Figure 13.3:
RandomLineChart.con output

be heavy.

Concept has hundreds of image manipulating APIs. Check the Concept
Framework documentation for a complete list.

For video processing, a wrapped class for the ffmpeg command line utility
called FFMpeg, defined in FFMpeg.con, provides access to video files.

It can extract frames, get video information and perform conversion
between different formats. This can be used for video normalization
(keeping videos in the same format, regardless of the uploaded format).
Also, video frames can be easily extracted by sing the GetPreview
function. This is useful for generating video preview image.

1 include FFMpeg.con

2

3 class Main {

4 function Main() {

5 var ff=new FFMpeg();

6 try {

7 ff.InputMovie="video.avi";

8 echo "Duration : " + ff.Duration + " seconds\n";

9 echo "Resolution : " + ff.VideoInfo[VIDEO_SIZE] + "\n";

10 echo "Video codec: " + ff.VideoInfo[VIDEO_CODEC] + "\n";

11 echo "Audio codec: " + ff.AudioInfo[AUDIO_CODEC] + "\n";

12

13 echo "\n\nStarting generating best previews ...\n";

14 var idcode="best_preview";

15 var idcode_png=idcode+".png";

16 var idcode_mpg=idcode+".mpeg";

13.4. IMAGE AND VIDEO PROCESSING 421

17

18 // generate a preview. Identify 5 previws, and

19 // choose the one with most colors (avoiding black

frames)

20 ff.GetPreview(idcode_png, PREVIEW_PNG, "320x240", 5);

21

22 echo "Converting to MPEG";

23 ff.Convert(idcode_mpg);

24

25 } catch (var exc) {

26 echo exc;

27 }

28 }

29 }

The FFMpeg class provides only basic video information, frame extraction
and video conversion. In practice, the use of ffmpeg utility with the system
static function (defined in standard.C.io import library) is recommended.

standard.lib.captcha has the Captcha(var text) function, returning the
contents of a gif file and setting the text to a random string, for generating
CAPTCHA (Completely Automated Public Turing test to tell Computers
and Humans Apart).

1 import standard.lib.captcha

2 import standard.C.io

3

4 class Main {

5 Main() {

6 WriteFile(Captcha(var data), "captcha.gif");

7 }

8 }

The resulting file is shown in figure 13.4.

PDF files can be easily read with the standard.lib.poppler import library.
You can extract text, images or convert pages to images.

The following static functions are provided:

handle PDFLoadBuffer (string buffer, string password=””, var
error=null)

422 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

Figure 13.4:
Generated file (captcha.gif)

Loads a PDF from the given string buffer. If password is set, the
given password is used for decrypting the document. error (if given)
will be set to the error message, if any. On succes it returns a
document handle. If it fails, it returns null.

handle PDFLoad (string filename, string password=””, var error=null)
Loads a PDF from the given file. If password is set, the given
password is used for decrypting the document. error (if given) will
be set to the error message, if any. On succes it returns a document
handle. If it fails, it returns null.

PDFClose (handle)
Closes the PDF.

number PDFPageCount (handle)
Returns the number of pages in the loaded document.

string PDFPageText (handle, number pageindex)
Returns the text, as a Concept string, contained by the PDF on the
given page index. Page 0 is the first page.

array PDFFindText (handle, number pageindex, string what)
Searches for what on the given page. Returns an array containing
key-value arrays as elements, describing the position of the text in
the PDF. The keys are: x1, y1, x2 and y2. If the function fails, it
returns null.

string PDFImageBuffer (handle, number pageindex, type=“png”,
zoom=1.0, var error=null)

number PDFImage (handle, number pageindex, string filename,
type=“png”, zoom=1.0, var error=null)
Returns true if succeeded.

13.4. IMAGE AND VIDEO PROCESSING 423

array PDFAttachments (handle)
Returns the attached PDF objects, as an array of arrays. Each array
element has the following keys: name, description, size, ctime, mtime
and content.

It is fairly easy to read a PDF document:

PDFReaderExample.con

1 import standard.lib.poppler

2 import standard.C.io

3

4 class Main {

5 function Main() {

6 var pdf = PDFLoadBuffer(ReadFile("test.pdf"), "", var err);

7 if (pdf) {

8 var pages = PDFPageCount(pdf);

9 echo "Document has $pages pages\n";

10 for (var i = 0; i < pages; i++) {

11 echo "Page ${i+1}:\n";

12 echo "=============================\n";

13 // show page text

14 echo PDFPageText(pdf, i);

15 // save page as image

16 PDFPageImage(pdf, i, "page_$i.png");

17 echo "=============================\n";

18 // search some text

19 var arr = PDFFindText(pdf, i, "sample");

20 if (arr)

21 echo "It contains the searched word!\n";

22 }

23 PDFClose(pdf);

24 }

25 }

26 }

The previous example will load a PDF file from a file and will convert it to
a sequence of images. It will also print the contents of the pages and
search for the word “sample” on every page.

424 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

13.5 Face detection

The standard.lib.face provides face detection routines based on OpenCV. It
also provides access to CAS capturing sources, for example web cams, (the
one on the server-side), for capturing images from various sources.

handle LoadObject (string filename)
Loads a Haar Feature-based Cascade Classifier for Object Detection
from filename. Returns a handle (not null) if succeeded.

CloseObject (number handle)
Closes the loaded object, and frees the memory asociated with it

array ObjectDetect (string inputname, harr handle or filename[,
number type=OBJECT FILE, biggest object=false, string format,
number width, number height, iterations = 5])
Detects an ojbect. Returns an array containing the detected objects,
if succeeded, or a number describing the error code if failed. Input
name may be a image filename or a camera index (or an empty for
any camera) if the type is set to OBJECT CAMERA. If set to
OBJECT BUFFER, the inputname should be the actual buffer.

array FaceRecognize (string inputname, array training[, var confidence,
type=OBJECT FILE, string trainingdata filename, var
trainig container)
Detects a face in the given input/type. Returns a negative number
on error.

CloseRecognize (handle)
Closes the training data handle.

string ReadCamera (camera index=0, format=“png”, delay=0)
Captures an image from the given camera index and returns the
image buffer as a string in the given format.

handle OpenCamera (camera index=0[, number width, number height])
Opens a camera. If width and height are provided, will open it at the
given resolution

CloseCamera (handle)
Closes a previously opened camera.

13.5. FACE DETECTION 425

string CameraFrame (handle, format=“png”)
Captures a frame from the given camera, and returns the captured
frame as a buffer, in the given format.

1 import standard.lib.face

2 import standard.C.io

3 import standard.graph.imagemagick

4

5 class Main {

6 function Main() {

7 var data=ReadFile("test.jpg");

8 // we could also capture an image from any camera

9 // on the server

10 // var data = ReadCamera();

11 var arr=ObjectDetect(ReadFile("people.jpg"), "face.xml",

OBJECT_BUFFER, 0);

12

13 // the dection is over, now draw some rectangles

14 var w = NewMagickWand();

15 var img = MagickReadImage(w, "people.jpg");

16 var draw = NewDrawingWand();

17 var color = NewPixelWand();

18 PixelSetColor(color,"#00ff00");

19 DrawSetStrokeWidth(draw, 3);

20 DrawSetStrokeColor(draw, color);

21 var color2 = NewPixelWand();

22 PixelSetColor(color2,"none");

23 DrawSetFillColor(draw, color2);

24 var len = length arr;

25 for (var i=0; i<len; i++) {

26 var obj = arr[i];

27 if (obj) {

28 var x = obj["x"];

29 var y = obj["y"];

30 DrawRectangle(draw, x, y, x + obj["w"], y + obj["h"]);

31 }

32 }

33 MagickDrawImage(w, draw);

34 MagickWriteImage(w, "detected.png");

35 }

36 }

426 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

face.xml defined an object for face recognition. You will find it with a
simple web search on face.xml. The output file (detected.png) is shown in
figure 13.5.

You could also identify a face, by using:

var result = FaceRecognize(ReadFile("frame.png"), ["training1.png",

"training2.png", "training3.png"], var confidence,

OBJECT_BUFFER, "", var container);

// or

var result = FaceRecognize(ReadCamera(), ["training1.png",

"training2.png", "training3.png"], var confidence, OBJECT_CAM,

"", var container);

Result will be < 0 on error, false if not recognized or > 0 if input data
matches the training data.

Figure 13.5:

For capturing images from the Concept Client, see the documentation for
the ROCV class.

Note that ObjectDetect is not limited to faces. You may use it with any
object definition.

13.6. H.264 VIDEO SUPPORT 427

13.6 H.264 video support

Concept supports the H.264 video codec. In the future, support for HEVC
(H.265), VP8 and VP9 will be added. For now, the support is limited to
H.264 due to the hardware support available in different devices. For
example, Intel Haswell CPUs support hardware encoding and decoding.
Also, various smart phones and tables, eg. recent iPhones (starting with
fifth generation), and some high-end Android devices have hardware H.264
encoders. This minimizes the power usage while encoding or decoding
H.264 frames.

On the server-side Concept H.264 support is based on Cisco’s OpenH264
project. It was primarily chosen because the BSD license, that allows
deployment in commercial applications.

The server-side codec library (standard.arch.h264) works only with
YUV420p frames. YUV is a color space typically used as part of a color
image pipeline. It encodes a color image or video taking human perception
into account, allowing reduced bandwidth for chrominance components,
thereby typically enabling transmission errors or compression artifacts to
be more efficiently masked by the human perception than using a ”direct”
RGB-representation.5.

standard.arch.h264 API list:

handle H264Encoder (array properties)
Creates a H.264 encoder

handle H264Decoder (array properties)
Creates a H.264 decoder

H264EncoderSet (handle encoder, number property, number value)
Sets a property to the encoder. property must be one of:
ENCODER OPTION DATAFORMAT,
ENCODER OPTION IDR INTERVAL,
ENCODER OPTION SVC ENCODE PARAM BASE,
ENCODER OPTION SVC ENCODE PARAM EXT,
ENCODER OPTION FRAME RATE,
ENCODER OPTION BITRATE,

5Source:https://en.wikipedia.org/wiki/YUV as shown on August 7, 2015

428 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

ENCODER OPTION MAX BITRATE,
ENCODER OPTION INTER SPATIAL PRED,
ENCODER OPTION RC MODE,
ENCODER OPTION RC FRAME SKIP,
ENCODER PADDING PADDING,
ENCODER OPTION PROFILE, ENCODER OPTION LEVEL,
ENCODER OPTION NUMBER REF,
ENCODER OPTION DELIVERY STATUS,
ENCODER LTR RECOVERY REQUEST,
ENCODER LTR MARKING FEEDBACK,
ENCODER LTR MARKING PERIOD, ENCODER OPTION LTR,
ENCODER OPTION COMPLEXITY,
ENCODER OPTION ENABLE SSEI,
ENCODER OPTION ENABLE PREFIX NAL ADDING,
ENCODER OPTION ENABLE SPS PPS ID ADDITION,
ENCODER OPTION CURRENT PATH,
ENCODER OPTION DUMP FILE,
ENCODER OPTION TRACE LEVEL,
ENCODER OPTION TRACE CALLBACK CONTEXT,
ENCODER OPTION GET STATISTICS,
ENCODER OPTION STATISTICS LOG INTERVAL,
ENCODER OPTION IS LOSSLESS LINK,
ENCODER OPTION BITS VARY PERCENTAGE

H264EncoderGet (handle encoder, number property, out number value)
Gets an encoder property and sets the value parameter

H264DecoderSet (handle encoder, number property, number value)
Sets a property to the decoder. property must be one of:
DECODER OPTION DATAFORMAT,
DECODER OPTION END OF STREAM,
DECODER OPTION VCL NAL,
DECODER OPTION TEMPORAL ID,
DECODER OPTION FRAME NUM,
DECODER OPTION IDR PIC ID,
DECODER OPTION LTR MARKING FLAG,
DECODER OPTION LTR MARKED FRAME NUM,
DECODER OPTION ERROR CON IDC,
DECODER OPTION TRACE LEVEL,
DECODER OPTION TRACE CALLBACK CONTEXT,

13.6. H.264 VIDEO SUPPORT 429

DECODER OPTION GET STATISTICS

H264DecoderGet (handle encoder, number property, out number value)
Gets an decoder property and sets the value parameter.

H264EncoderDone (handle encoder)
Releases the memory used by the encoder. Not calling this function
after encoding is finished will result in a memory leak.

H264DecoderDone (handle decoder)
Releases the memory used by the decoder. Not calling this function
after decoding is finished will result in a memory leak.

number H264Encode (handle encoder, yuv420p buffer, image width,
image height, format=videoFormatI420, frame timestamp = 0)
Encodes yuv420p buffer. The buffer size must be image width *
image height * 3 / 2 (or 12 bits per pixel). On success, it returns 0.

number H264Decoder (handle decoder, h264 buffer, out
yuv420p output, number of frames = 0, out number frame width =
0, out number frame height = 0, out number format =
videoFormatI420)
Decodes a h264 buffer or NAL unit and sets yuv420p output. If
number of frames is non-zero, and the function call succeeds
yuv420p output will contain an array of yuv420p frames. If
number of frames is zero, yuv420p output will contain a buffer with a
single frame. Optionally this function will return the frame width
and height, and picture format. If it succeeds, it will return 0.

The simplest example is described bellow. Before running it, be sure to
place a plain YUV420p video file in the ./in/outHD.yuv directory and
create a directory called out.

For converting a video to yuv format, ffmpeg may be used:

ffmpeg -i 10secondsHDVideo.avi -c:v rawvideo -pix_fmt yuv420p

./in/outHD.yuv

H264EncodeDecodeExample.con

1 import standard.arch.h264

2 include File.con

430 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

3

4 class Main {

5 Main() {

6 var width = 1920;

7 var height = 1080;

8

9 var enc = H264Encoder(["iPicWidth" => width,

10 "iPicHeight" => height,

11 "fMaxFrameRate" => 25,

12 "iTargetBitrate" => 10000000,

13 "bEnableSSEI" => true,

14 "iMultipleThreadIdc" => 4,

15 "bSimulcastAVC" => true

16]);

17 var dec = H264Decoder(["sVideoProperty.eVideoBsType" =>

VIDEO_BITSTREAM_AVC, "eOutputColorFormat" =>

videoFormatI420]);

18 var ref = "";

19 var f = new File("rb");

20 f.Name = "in/outHD.yuv";

21 if (f.Open()) {

22 for (var i = 0; i < 1000; i++) {

23 f.Read(var buf, width * height * 3/2);

24 if (!buf)

25 break;

26 if (H264Encode(enc, buf, width, height, var out))

27 echo "Error encoding frame\n";

28

29 ref+=out;

30 if (out) {

31 var res = H264Decode(dec, out, var b2);

32 if (res)

33 echo "Error decoding frame\n";

34 WriteFile(b2, "out/frame$i.yuv");

35 }

36 echo "Frame: $i\n";

37 }

38 f.Close();

39 WriteFile(ref, "out.h264");

40 }

41 H264EncoderDone(enc);

42 H264DecoderDone(dec);

43 }

44 }

13.6. H.264 VIDEO SUPPORT 431

This will encode and then decode a raw YUV420p video.

Note that Concept Client supports only H.264 AVC.

For capturing video from the Concept Client (mobile, and web browsers)
the RVideoStream class, defined in OCV/RVideoStream.con may be
used. A single RVideoStream object should be used both for recording
and playing video content.

Note: This class works only with plain H.264 NAL units. This means that
containers like mp4, avi or ts can’t be used.

RVideoStream class reference:

RVideoStream (owner)
Creates a video stream object

Record ()
Start capturing H.264 frames from camera

Stop ()
Stops camera capturing

AddBuffer (buffer)
Adds a H.264 frame buffer to the camera playback queue.

Clear ()
Clears the playback queue, discarding any buffers that didn’t play.

event OnBuffer (Sender, buffer)
Called when a new H.264 buffer is available from the camera

number property Bitrate
Sets the bitrate of the output buffer. Note that the actual bitrate
may vary depending the the device’s implementation

number property Quality
Sets the video quality, 10 being the highest (HD) and 4 the lowest
quality usually fit for video conferences over 3G or congested
networks.

number property FrameSize
Sets the frame duration in milliseconds. For example, for 25 frames
per seconds, FrameSize will be 40ms.

432 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

number property Camera = CAMERA BACK — CAMERA FRONT
Selects the back facing or front facing camera.

number property Orientation = ORIENTATION HORIZONTAL —
ORIENTATION VERTICAL
Sets the camera orientation.

number property MaxBuffers
Sets the maximum buffers to keep in the playback queue. If this
value is 0, the number of buffers in unlimited.

VisibleRemoteObject property Preview
Selects the preview and playback surface to be used.

SetPreviewRect (x, y, width, height)
Sets the preview rectangle to be used when recording video. If not
set, the preview will use the entire Preview surface.

The following example wil capture data from the front facing camera and
output it back. It will use the highest resolution and 3 megabits
bandwidth.

SimpleCameraMirror.con

1 include Application.con

2 include RForm.con

3 include OCV/RVideoStream.con

4

5 class MyForm extends RForm {

6 var camera;

7 MyForm(parent) {

8 super(parent);

9 camera = new RVideoStream(this);

10 // select front camera

11 camera.Camera = CAMERA_FRONT;

12 // select best quality

13 camera.Quality = 10;

14 camera.Orientation = ORIENTATION_VERTICAL;

15 // set bitrate

16 camera.Bitrate = 3000000;

17 // set the preview rectangle size (upper left)

18 camera.SetPreviewRect(10,20,48,64);

19 // use this form as the preview surface

20 camera.Preview = this;

13.6. H.264 VIDEO SUPPORT 433

21 // max playback queue size is 20 frames

22 camera.MaxBuffers = 20;

23 camera.OnBuffer = function(Sender, EventData) {

24 // play the capture data

25 camera.AddBuffer(EventData);

26 };

27

28 this.Maximized = true;

29 camera.Record();

30 }

31 }

32

33 class Main {

34 function Main() {

35 try {

36 var Application=new CApplication(new MyForm(NULL));

37 Application.Run();

38 Application.Done();

39 } catch (var Exception) {

40 echo Exception;

41 }

42 }

43 }

434 CHAPTER 13. MEDIA, VOICE OVER IP AND TELEPHONY

Chapter 14

Performance

When writing code, in any language, not just Concept, is important to
write it cleanly and as optimal as possible. A program will spend most of
its time in loops. That is why the inner loop code must be written
carefully. In critical sections of the loop, or even the loop itself, it is
important to keep in mind that the code will be compiled by the JIT. The
JIT-compiled code will exit on function calls, a member reference or a
string modification. When the JIT will exit, the Concept Core interpreter
will process the byte code, at only a fraction of the speed. Note that every
called function, when called for the first time, is entirely interpreted. The
Concept Core Interpreter is a fast interpreter, but the JIT code is faster (as
any binary code). A function is compiled on the second call and executed
as machine code (native code), for optimizing the memory usage. If all the
functions were compiled, it will use with about 20% more memory, and
usually Concept applications run on a server, where the memory is
important. Less memory used, means more users served by the server.

When analyzing the operating systems, the Concept Core and the CAS
itself, has a slight advantage on non-Windows operating systems, but this
may come from better networking and disk caching implementations on
BSD and Linux.

In most applications the bottleneck will be the network speed, database
access or disk I/O. Concept Core itself reasonably fast, and when running
on JIT is comparable with code generated with C/C++ compilers.

435

436 CHAPTER 14. PERFORMANCE

14.1 Optimal loops

Most programs will spend most of their running time in loops. A loop, if
not written properly, may be a bottleneck for an application.

The first step is to optimize the exit condition. For example, the “bad”
loop:

for (var i = 0; i < length v; i++)

v[i] = 2;

The length operator in Concept is highly optimized, but it still generates
an extra CAL instruction, resulting into a less than optimal loop. Also, for
the given example, the JIT optimizing algorithms will not be able to detect
that it is an array initialization. The optimized loop should look like this:

var len = length v;

for (var i = 0; i < len; i++)

v[i] = 2;

Note that for, while and do..while in CAL byte code produce almost
identical byte code, so its up to the programmer preferences which one to
use.

Member access use additional instructions, making them a little slower
than local variables, so when using multiple times the same variable
member, you may want to store its value it in a local variable.

The “bad” example (adding to an already initialized member the sum of 1
to 100):

var i = 0;

while (++i <= 100)

this.SomeValue += i;

For every loop, the member will be read. This will also produce a break in
the JIT code for every read or write of the SomeValue member. The
optimal loop would be:

var i = 0;

14.1. OPTIMAL LOOPS 437

var MemberValue = this.SomeValue;

while (++i <= 100)

MemberValue += i;

this.SomeValue = MemberValue;

Note that when running the MT Core (multi-threaded), the
this.SomeValue value may be changed from another thread. For
multi-threading, the previous example may produce inconsistence, if
this.SomeValue would be modified from another thread. For this, you have
semaphores (refer to section 12.2).

Similar with member access, array element access require extra instruction
in the compiled code. Also, arrays with less than 8192 elements are highly
optimized for access. For array bigger than 8192, is a little faster to access
elements in sequential order, rather than random order. Arrays implement
a mini-caching system, that cache the last element, resulting in an almost
zero overhead when performing operations like arr[n] = arr[n] * 2 + 1.
However, you may want to store its value in a local variable, to optimize
high time-consuming loops.

For example, the “bad” loop:

var i = 0;

while (++i < 100)

arr[i] = arr[i] * arr[i] * arr[i];

The loop will generate only one extra instruction in the CAL, but if your
loop is run million times per second, the following loop, may reduce the
execution time with about 10%.

var i = 0;

while (++i < 100) {

var e = arr[i];

arr[i] = e * e * e;

}

We could optimize the loop even further, if we reduce the number of
operations by one:

438 CHAPTER 14. PERFORMANCE

var i = 0;

while (++i < 100) {

var e = arr[i];

arr[i] *= e * e;

}

Note that instead of making two multiply operations, we make one and an
assignment with multiplication (one instruction). This kind of
optimizations, gives you a slight execution time improvement (about 5 to
10 percent).

Static Concept functions require an extra step in their execution than
standard functions. This is because a virtual object is created to hold the
function. So assuming that we have:

class SomeClass {

static foo() {

do_something();

}

}

SomeClass::foo() will execute a little slower than if we’d execute this.foo().
The difference is barely noticeable, but if foo is called millions of times,
this could add up.

When performing operations between different data types, avoid letting
the Concept Core evaluating constant strings in loops, because it will be
re-evaluated for every loop. For example, the “bad” loop:

var i = 0;

var sum = 0;

while (++i <= 100)

sum += "1";

sum, being a number, will add the “1” string as a number, not as a string.
If sum would be initialized to “” instead of 0, then will create an array
containing 100 of “1”. For every iteration, “1” will be evaluated to its
corresponding number value, 1. The optimal loop may look like this:

var i = 0;

14.1. OPTIMAL LOOPS 439

var sum = 0;

var constant = value "1";

// constant will be 1, the number

while (++i <= 100)

sum += constant;

Concept properties also require an extra step when evaluating (calling the
get member). When using the same property, multiple times, you may
want to store its value in a local variable, exactly like in the member access
example. Also, avoid setting it multiple times in a loop. This will cause
multiple calls to set. When dealing with Concept UI class properties, is
may generate a client property request, resulting in network traffic, being
extremely important to store the property variable in a local network, to
avoid an unnecessary network traffic.

The “bad” UI property example:

include REdit.con

[..]

var dummy = edit.Text + edit.Text;

[..]

In the above example, each call to edit.Text will generate a network
message and will wait for the response. This will last from one millisecond,
to a few hundreds milliseconds, depending on the network connection
quality. Reading the Text property twice, will generate two request and
two wait operations. The optimal and correct way to do this is:

include REdit.con

[..]

var text = edit.Text;

var dummy = text + text;

[..]

This will generate only one network message and only wait operation. The
UI property set operation does not generate a wait operation, being
significantly faster than get. This applies only for UI objects (The one
prefixed by “R” for example REdit or RImage).

When setting multiple UI class properties, the networks messages can be

440 CHAPTER 14. PERFORMANCE

grouped in a jumbo packet, containing more than one message, by
enclosing the property set CApplication::BeginNonCritical() and
CApplication::EndNonCritical(). Note that the call to EndNonCritical is
very important. Not calling it will cause a very high latency in set
operations. These calls are effective when setting more than 4 properties in
a row. A read of an UI property will fragment the jumbo packet, assuming
that it cannot read a property until all the cached write operations are not
finished.

The “bad” example:

include REdit.con

include RLabel.con

[..]

label.Caption = "Name:";

edit1.Text = "Your name";

label2.Caption = "Occupation:";

edit2.Text = "Your occupation";

[..]

Each of the set operations will cause small network packages to be sent to
the client. You can send all the Concept messages in one big network
package by using:

include REdit.con

include RLabel.con

[..]

CApplication::BeginNonCritical();

label1.Caption = "Name:";

edit1.Text = "Your name";

label2.Caption = "Occupation:";

edit2.Text = "Your occupation";

CApplication::EndNonCritical();

[..]

Note that BeginNonCritical and EndNonCritical will generate two more
Concept messages. A code block must have at least 4 property set
operations in order for this to be network efficient. This is useful for big
data forms, with tens of fields, resulting in all the data being set in one
operation. It is important to avoid calling BeginNonCritical twice, without
calling EndNonCritical. This may cause the message jumbo packet to

14.1. OPTIMAL LOOPS 441

contain only a few messages and standard packets to be used.

Avoid using empty loops, for example:

while (this.SomeFlag < 100);

Assuming that you’re in a multi-threaded environment (MT Core), and
SomeFlag will be modified by another thread. For this, you can use
semaphores (refer to section 12.2). Alternatively, you may introduce a
Sleep in the loop, to minimize the CPU usage for the current thread.

while (this.SomeFlag < 100)

Sleep(50);

This will cause the thread to waste 50 milliseconds, giving other threads a
change to use the full CPU power.

When dealing with function calls, having large string parameters (for
example file contents, returned by ReadFile), is better to send the
parameter by reference, to avoid copying the string. This method can be
used only if the called function doesn’t alter the string contents.

For example:

[..]

foo(string filecontents) {

// do something with filecontents

}

testFoo() {

var data = ReadFile("somebigfile.bin");

foo(data);

}

[..]

The previous example will cause the filecontents parameter to contain a
copy of the file content. For faster execution, you can send the file contents
by reference:

foo(var string filecontent) {

// do something with filecontents

}

442 CHAPTER 14. PERFORMANCE

Note the var added to the parameter. This method is convenient only for
large string parameters, because arrays, delegates and objects are sent by
reference by default (object reference, not variable reference).

14.2 Optimize memory usage

When creating CAS applications, the memory usage may be a concern,
when dealing with a great amount of concurrent users. For this, Concept
Core has a few optimizing mechanisms, like shared memory for the byte
code and variable memory allocation at first usage. In other words, a
variable will be allocated on first use only. This reduces the amount of
memory used by Concept Core. Also, by default, Concept Core doesn’t
impose limits on the used memory, in theory the only limit is given by the
hardware.

Each concept variable uses additional overhead information. Each variable
uses at least 15 bytes on 32 bit architectures and 19 bytes on 64-bit
architectures. Arrays, objects and strings may use additional meta data.
The variable meta data keeps informations like variable type, link count
and property data. When using arrays, each array element is a variable.
An array of 1024 elements will use at least 15kB on 32 bit and at least
19kB on 64 bit architectures. A as further optimization, an array element
is created when first used. For example if arr is an empty array, and
arr[1000] = 1, then the array will use just the memory needed for a single
variable. The length of the array will be 1001. The other elements will be
allocated when first used. Arrays use some additional space for meta-data
keys and elements.

The same happens with class objects. Each member variable will be
allocated on first use. If a member is never used, it will never be allocated.

Variable meta data is useful to the Concept Core to manage the memory
usage and variable types. For example, when a variable’s link count
reaches 0, it will automatically be freed.

The only thing to avoid are circular references, however, the Concept

14.2. OPTIMIZE MEMORY USAGE 443

Garbage Collector is able to detect them. For example, is better to avoid
situations like:

this.SomeMember.SomeOtherMember = this;

This will generate a cyclic reference and will require some additional
attention from the Concept Core. It is recommended to avoid these
situations.

Concept Core manage its own memory. However, when using low level
APIs (static C functions), require explicit memory management. For
example, using the TCPSocket class doesn’t require attention to memory
allocation or closing the socket before TCPSocket is freed. If low-level
standard.net.socket APIs are used, explicit call to SocketClose is
mandatory for avoiding memory leaks.

Starting Concept 4.0, for UI application only, a Workers parameter may
be set in the application manifest. When set to 1, all clients will run in the
same process, minimizing the memory usage (code and static libraries will
be loaded once for all the user).

test.con.manifest

[Application]

Workers = 1

If Workers is set to a higher value than one, it will represent the number of
users per process. For example, if set to 100, each process will be
responsible for 100 concurrent users.

Setting this parameter will make the server to scale almost linearly (see
figures 14.1 and 14.2).

The only disadvantages of using shared processes is if a instances crashes,
will disconnect all the users connected to the process.

444 CHAPTER 14. PERFORMANCE

Figure 14.1:
Scalability for small applications (Concept 3 vs 4 with Workers = 1)

Figure 14.2:
Scalability for big applications (Concept 3 vs 4 with Workers = 1)

14.3 JIT-friendly code

Concept Core uses a JIT(Just-In-Time) compiler for running native code
on the CAS platform. It currently generate code for Intel x86-32, AMD
x86-64, ARM (including ARM-v5, ARM-v7 and Thumb2 instruction sets),
IBM PowerPC-32, IBM PowerPC-64, MIPS-32 and SPARC-32. The JIT is
based on the sljit project (stack-less platform independent JIT compiler)
with various code optimizations attached, like array initialization loop
detector, arithmetic simplification, and pipeline stall optimization.

Every Concept function is compiled on the second call, because

14.3. JIT-FRIENDLY CODE 445

compilation, run-time optimization and memory overhead are considered
more expensive that a single function call. By using this method, only the
frequent called functions are compiled, resulting in an optimal balance
between speed and memory overhead.

The JIT compiler analyzes the CAL byte code, and creates multiple entry
points on the same function. When an operation that cannot be handled
by the native code is requested, the JIT code simply exits to the Concept
Core Interpreter, that will continue the execution from that point to the
next JIT block.

For now, object creation, delegate calls, static function calls, object
member access and Concept function calls are not handled by the JIT
code, some string and array operators and the echo and throw keywords,
falling back to the Concept Interpreter. After these unsupported
operations are executed, the Concept Core Interpreter will switch back to
JIT-generate native code.

All numerical operations are executed by the JIT. Note that a division by
0 run-time error, reported by the Concept Core Interpreter, will not be
reported by the JIT native code, resulting in evaluating the response to
+∞ or −∞ (or the maximum/minimum double precision floating point
value).

With ideal code, the Core uses almost exclusively the JIT. In practice,
reading members, calling functions or creating objects, will break the JIT
code.

For example:

for (var i = 0; i < 100000; i++)

this.SomeMember += i;

Will use Concept Interpreter for every operation on this.SomeMember.
The JIT-friendly way is:

var a = this.SomeMember;

for (var i = 0; i < 100000; i++)

a += i;

this.SomeMember = a;

446 CHAPTER 14. PERFORMANCE

The previous example is faster on the Concept Core Interpreter, and the
loop will also use JIT-generated uninterrupted binary code.

Loops calling the same function on the same parameters should be
avoided, for example:

import standard.lib.math

[..]

var a = 0;

for (var i = 0; i < 100000; i++)

a += i * sin(M_PI/2);

This will break the JIT loop on every iteration. The correct way of doing
this is:

var sin_pi_2 = sin(M_PI/2);

for (var i = 0; i < 100000; i++)

a = i * sin_pi_2;

On this implementation, the loop will run interrupted.

The JIT compiler detects some special situations. For example, if an array
needs to be initialized, is better to do that in a separate loop.

The unfriendly example.

var[] arr;

var a = 0;

for (var i = 0; i < 100; i++) {

arr[i] = 1;

a += i;

}

The previous example will be executed relatively fast, but it can go even
faster, if the loop is broken into two loops:

var[] arr;

var a = 0;

// JIT will detect this array

// initialization

for (var i = 0; i < 100; i++)

arr[i] = 1;

14.3. JIT-FRIENDLY CODE 447

for (var i = 0; i < 100; i++)

a+= i;

When using this method, the JIT optimizer will detect the array
initialization, and execute the loop in a single step.

Loops increments are very important to JIT. If it detects that a loop uses
a locally variable, that is not used as parameter, result or divide/modulus
operations, will assume that it has to deal with an integer value, and
instead of using double floating points as iterator value, it will use integer
values, which are significantly faster. Note that the increment must be
done via the ++ operator for safe detection.

For now, the only bottleneck in the JIT code is the use of the floating
point registers, executing slower when compared to integer values. In the
next CAS versions, more integer detection optimizations will be added,
reducing the gap.

When dealing with function consuming lots of CPU cycles, you may want
to force the JIT compilation from the first run. This may be done by
simply adding a dummy call to the function. For example:

do_sum(number start, number end) {

var result;

for (var i = start; i <= end; i++)

result += i;

return result;

}

Main() {

// a dummy call

do_sum(0,0);

// the second call will be run natively

echo do_sum(0, 1000000);

}

The first call to do sum does nothing. It is just a dummy call, to force the
function call count to increment. The second call will force the compilation
of the function, resulting in full native machine code.

448 CHAPTER 14. PERFORMANCE

Automating type conversion should be avoided. An automatic conversion
from string to number will result in JIT break and fall back to Concept
Core Interpreter. As a “bad” example:

1 // evaluate 1 + value "2"

2 var a = 1 + "2";

3 a *= 2;

4 a += "3";

Line 2 and 4 will always cause a JIT break, because the core will need to
evaluate “2” to number 2, and “3” to number 3.

14.4 Profiler

A software profiler is a tool that allows the developer to analyze the
program in run-time. It will collect data regarding functions or exceptions
(or other more specific instructions). It will help in program optimization,
by identifying bottlenecks.

Concept core uses a simple profiler that will analyze the function execution
time and exceptions. For profiling an application, the developer must
simply instantiate the Profiler class, defined in Profiler.con. Note that
Concept profiler cannot analyze code executed on GPU via gpu or

parallel macros.

The profiling data can be read by using one or more of the following
properties:

Call
Returns an unsorted array having class and function (in the form
class.functionname) name as key and call count as value.

Duration
Returns an unsorted array having class and function (in the form
class.functionname) name as key and total call duration as value. If
a function is called multiple times, it will hold the summed execution
time.

Throw

14.4. PROFILER 449

Returns an unsorted array having class and function (in the form
class.functionname) name as key and the throw statement reached
count as value.

CallSorted
Sorted version of Call, returning instead an array composed of arrays
with two elements. The first element in the child array is the
function name and the second one is the call count.

DurationSorted
Sorted version of Duration, returning instead an array composed of
arrays with two elements. The first element in the child array is the
function name and the second one is the duration.

ThrowSorted
Sorted version of Throw, returning instead an array composed of
arrays with two elements. The first element in the child array is the
function name and the second one is the reached throw count.

No external tool is needed for analyzing the content. A simple console
example, will use the following code:

1 include Profiler.con

2 import standard.lib.thread

3

4 class Main {

5 foo() {

6 return 1;

7 }

8

9 foo2() {

10 Sleep(100);

11 return 0;

12 }

13

14 Main() {

15 // create the profiler

16 var p=new Profiler();

17

18 foo2();

19 foo2();

20 foo();

21

450 CHAPTER 14. PERFORMANCE

22 // show collected data

23 echo p.DurationSorted;

24 }

25 }

The output should look like:

Array {

[0] =>

Array {

[0] => Main.foo2

[1] => 218.4

}

[1] =>

Array {

[0] => Profiler.GetDurationSorted

[1] => 0

}

[2] =>

Array {

[0] => Main.foo

[1] => 0

}

}

For concept:// applications, the ProfilerForm helper class, defined in
ProfilerForm.con may offer a convenient method of getting the profiling
data. The constructors takes two parameters:

ProfilerForm(Owner, Profiler prof);

Where prof is a Profiler object and Owner is the application main form
(or any other form). It doesn’t matter who owns the ProfilerForm, the
entire program being analyzed.

A minimal GUI example would be:

1 include Application.con

2 include ProfilerForm.con

3

4 class MyForm extends RForm {

5 MyForm(Owner) {

14.5. COMPARISON WITH OTHER PLATFORMS 451

6 super(Owner);

7 var profiler = new ProfilerForm(this, new Profiler());

8 profiler.Show();

9 }

10 }

11

12 class Main {

13 Main() {

14 try {

15 var Application = new CApplication(new MyForm(null));

16 Application.Init();

17 Application.Run();

18 Application.Done();

19 } catch (var Exception) {

20 echo Exception;

21 }

22 }

23 }

This will actually produce no profiling data (no code is executed after the
creation of the ProfilerForm).

However, for a complex application, the output may look like in the
figure 14.3.

The ProfilerForm will refresh its data every 2 seconds, unless the
RefreshTimeout(milliseconds) property is set to another value (default is
2000).

14.5 Comparison with other platforms

The Concept Programming Language was designed to be easy to use, with
an rapid learning curve, with syntax familiar for most programmers
(similar to C++, C#, Java, JavaScript). The Core is designed to be both
fast and memory efficient, for running on a server environment with
minimal overhead. Being a hybrid core (using both an interpreter and a
JIT compiler), makes it hard to compare with both interpreters and
compilers. As an interpreter, Concept is reasonable fast (with speeds
slightly higher than PHP or Python). The JIT core is about 10 times
faster overall than the interpreter core. On arithmetic operations the JIT

452 CHAPTER 14. PERFORMANCE

Figure 14.3: ProfilerForm

is about 20 times faster. In this case, is comparable in speed with binary
code generated by the C/C++ compilers.

A popular choice is the sieve of Eratosthenes benchmark. In mathematics,
the sieve of Eratosthenes, one of a number of prime number sieves, is a
simple, ancient algorithm for finding all prime numbers up to any given
limit. It does so by iteratively marking as composite (i.e. not prime) the
multiples of each prime, starting with the multiples of 21.

The used program was:

1 import standard.C.time

1Source: http://en.wikipedia.org/wiki/Sieve of Eratosthenes as of January 24, 2014

14.5. COMPARISON WITH OTHER PLATFORMS 453

2 import standard.C.math

3

4 class Main {

5 Sieve(SIZE, timeout) {

6 if (!SIZE)

7 return;

8 var[] flags;

9 var i, prime, k, iter, count;

10 var iterations, seconds, score, startTime, elapsedTime;

11

12 startTime = clock();

13 do {

14 count = 0;

15 for (i=0; i<SIZE; i++)

16 flags[i] = true;

17

18 for (i=0; i<SIZE; i++) {

19 if (flags[i]) {

20 prime = i + i + 3;

21 for (k=i+prime; k < SIZE; k+=prime)

22 flags[k]=false;

23 count++;

24 }

25 }

26 iterations++;

27 elapsedTime = clock() - startTime;

28 } while (elapsedTime < timeout);

29

30 seconds = elapsedTime/1000;

31 score = round(iterations/seconds);

32 echo "$iterations iterations in $seconds seconds (score:

$score, count: $count)\n";

33 }

34

35 Main() {

36 // force the JIT

37 Sieve(0, 0);

38 Sieve(8192, 10000);

39 }

40 }

The same program was translated in C, Java and PHP 5.4.

The results were (higher is better):

454 CHAPTER 14. PERFORMANCE

Language Score Used memory Notes
Java, using double 8243 3,516 kB
C, using int 7435 688 kB gcc -O0 (no optimization)
Concept 4064 1,240 kB
C, using double 3267 688 kB gcc -O3 (max optimization)
PHP 393 3,180 kB

The results for the sieve benchmark implementation(using doubles).

4067Concept

3267C using double (gcc -O3)

8243Java using double

0 1000 2000 3000 4000 5000 6000 7000 8000

Sieve score chart (higher, the better)

1400Concept

688C

3516Java using double

0 1000 2000 3000 4000

Memory usage chart (lower, the better)

When using double floating point numbers, the C compiler(gcc) with
maximum level of optimizations produces code slower than Concept (see
first chart). Java however, on the same test is twice as fast. When it comes
to memory, for the same test, C is the lightest, using about half the
memory used by Concept. This is, because Concept stores meta-data with
every variable. Java however, uses twice the memory used by Concept.
This could be regarded as a good speed - memory usage ratio. Note that

14.5. COMPARISON WITH OTHER PLATFORMS 455

hundreds of benchmark, on different operations can be made. The Sieve
benchmark gives no absolute comparison between execution time, just
some hints.

A second test, was to find all the prime numbers smaller than 10,000,000.
This test is intended to use big arrays. The test function was:

1 get_primes7(n) {

2 var s = new [];

3 for (var i = 3; i <= n; i += 2)

4 s[length s] = i;

5

6 var mroot = floor(sqrt(n));

7 var half = length s;

8 i = 0;

9 var m = 3;

10

11 while (m <= mroot) {

12 if (s[i]) {

13 var j = floor((m*m-3)/2);

14 s[j] = 0;

15 while (j < half) {

16 s[j] = 0;

17 j += m;

18 }

19 }

20 i++;

21 m = 2*i + 3;

22 }

23

24 var res = [2];

25 var len = length s;

26 for (var x = 0; x < len; x++) {

27 if (s[x])

28 res[length res] = s[x];

29 }

30 return res;

31 }

This function is difficult for Concept Core, because it has multiple JIT
breaks. It is executed partially by JIT, and partially by the interpreter
core.

456 CHAPTER 14. PERFORMANCE

The results were (lower time, the better):
Language Time(ms) Used memory
C++ (with std::vector) 546 25 MB
Concept 2577 127 MB
PHP 6421 488 MB

This test clearly shows the difference in memory usage between C++, with
homogeneous arrays (std::vector<int>) and Concept heterogeneous arrays.
PHP also uses heterogeneous arrays, being included in the benchmark. For
this test, PHP 5.4 command-line interpreter uses over almost 4 times the
memory used by Concept, and executes in over twice the time.

As expected, C++ homogeneous arrays are faster and uses far less memory
(with no meta-data needed).

Concluding, Concept is slower than Java, slightly faster than C/C++ when
dealing with floating-point numbers and faster than most interpreters.

The language itself, is weak typed, and the core automatically manages the
memory, making Concept easier to use than C/C++ or Java. CAS, comes
by default with everything needed for development and deployment and a
rich framework with about 200 high level classes, with easy to use
interfaces, and over 7,000 low-level APIs. The entire framework uses
straight forward and intuitive interfaces. No pointers or memory addresses
are managed by the programmer.

As a disadvantage when comparing with strong typed languages, is that
not all the errors can be identified at compile type. For example, if a
function taking an untyped parameter, assumed to be an array, receives a
number, a run-time error will be generated when the number will use an
array-specific operator, like []. For strong-typed languages, this situation
can be identified at compile time.

The code written in Concept and compiled, will run on any CAS,
regardless the operating system or architecture. The Concept Client allows
you to run instances of Concept applications on most devices, starting
from desktop computers to tablets, smart phones, smart TVs and
embedded systems.

Part IV

Real applications

457

Chapter 15

Problems and solutions

A technology, platform, programming language or database server must be
chosen for the right reasons. Concept is a great platform for cloud-based,
model-driven applications. It offers you about 80 to 90% of any
application, by providing both the Concept Framework and development
tools like CIDE and GyroGears.

Let’s define ‘the customer” as the one having a problem, the “solver” is
you or the analyst, the “end-user” is the user of the system (part of “the
customer”) and the “client” as the customer’s client. Note that in a few
cases, the customer may be the end-user.

Usually “the customer” identifies or anticipates a problem within his
organization and contacts the “solver”. Before describing the problem, you
must never let the customer describe the solution. The main task for the
customer is the problem description and nothing more. When the
customer specifies a solution, you’re on a direct road to a failed solution.
The customer usually lacks the knowledge, the vision, or simply misses the
outside perspective. It will tend to focus on it’s own perspective, but
usually, the end-users are the one inputing, working, processing, extracting
and reporting. Just think at this: when you go to the dentist, you tell the
dentist to pull your tooth out, or what it tooth hurts you? (assuming that
you don’t do regular check-ups). This is the case here. The customer never
knows what is best for his organization and is best to focus on the problem
only.

459

460 CHAPTER 15. PROBLEMS AND SOLUTIONS

Note, that the customer may not see or correctly identify a problem. The
solver must help the customer with problem identification, by analyzing his
organization processes. This usually comes in time, with experience. There
will always be unforeseen problems and the solver should not be afraid of
that. The solver should be working in a few steps, not necessary in the
given order:

Step 1
Isolate the output data, documents, forms, reports or interfaces (for
example when interfacing an physical equipment)

Step 2
Collect all the documents, forms or data models. Get real samples,
ideally following the data from start to end.

Step 3
Analyze the work flows. Identify each end-user’s role.

Step 4
Identify the contact persons. Usually the number of contacts must be
to the minimum, with an ideal of 1 responsible. This is useful for
forcing the customer to centralize communication and discuss
internally the problem in internal meetings, and provide only the
conclusions.

Step 5
Define the problem. Then split the problem in the maximum number
of sub-problems. Let’s call the sub-problem an “atomic problem”,
meaning a problem that cannot be split anymore.

Pay attention to the “end-user”, as it may often be a weak point in the
solution. It’s better to minimize the solution’s impact on the end-user, by
including a high degree of automation. Even the end-user education or
personality can have an impact on the solution.

The word “software” cannot be used yet. The solver must now define the
problem. This is the most important step, because an well-defined problem
is as solved. For example, if the customer has difficulties storing, accessing
and sharing documents in his organization, it may ask for a document
management solution. A software seller will guide the customer to a
generic document management system (DMS), but keep in mind that it

461

won’t be a perfect fit. However, if “the solver” helps the customer to
better describe the problem, and then tries to find a “best fit” solution,
supporting the actual work flows, rather than forcing the organization to
adapt to a generic solution, then it will actually solve the problem, rather
than minimize it. For example, the customer may have generic forms,
documents that will need some data collecting and reporting.

Assuming that the customer and the solver defined the problem, and then,
the solved split the problem to atomic problems, we can now talk about
“the software” and generate a list of requirements, for the best decision
when it comes of technologies or database servers.

Behind the “solver” may be a big team, or it may just be a freelancer,
doing both the analysis and the implementation. We will only focus on the
“customer” and the “solver” tasks. After the atomic problem list is
created, the solver must create a list of priorities and condition. For
example, a problem may not be solved before another one is solved. In
some situation, the solver may want to identify the minimum subset of
atomic problems that will provide a partial working solution. At this
point, the solution starts becoming a software system. In this case, the
customer may benefit a partial solution before is fully implemented,
reducing the implementation time.

Partial solutions are dangerous for the customer and the end-user. The
customer may have tendencies to intervene in the development process,
leading to a failure. Also, the end-user may be reluctant to cope with
frequent changes or updates, especially when it comes to procedure
modifications between updates. Partial updates are only good when
dealing with mature customers and/or when it may increase productivity.

The solver is responsible for the customers success or bankruptcy as it may
identify problems in the customer’s procedures. This being the case, it
must discuss and clarify before the implementation. It must never hide a
procedural problem to the customer. It may never ask the customer to
change a working procedure, because it would be easier for the solution.
The solution should always fit the client, not the other way.

It is important for the solver to avoid showing anger, dislike, disapproval,
even if the situation is tense. It must be very communicative, always
sustain any decision, keep the customer informed, be sincere, and resist to
any kind of pressure. His or hers job is to solve a problem, and a

462 CHAPTER 15. PROBLEMS AND SOLUTIONS

professional solver has a sole objective: a solution. The solver must solve
problems, not work for being liked by the customer or the end-user, so
keep a cool head. A solver needs tons of patience and optimism, being a
pessimist will make your job twice as hard.

A successful solver will not need nor accept dead-lines. Dead-lines are
toxic to complex projects, that usually will be in a state of permanent
evolution. A software system will only be over when it will have no more
users. As a solver, I prefer to tell the customer that it will be ready when
the problem will be solved. If you have enough experience with similar
projects, you may give a general time frame. However, even with clients in
the same vertical market, the solver will encounter different problems.

The solver must never be a seller. It must not negotiate with the client,
promote or impose actions strictly for its own profit.

15.1 HR application basics

Human resource management (HRM, or simply HR) is the management
process of an organization’s workforce, or human resources. It is
responsible for the attraction, selection, training, assessment, and
rewarding of employees, while also overseeing organizational leadership and
culture and ensuring compliance with employment and labor laws1.

We will use the basic recruiting process as an example. First of all, the HR
staff needs some CV sources, like web sites, e-mails or event social media,
for example LinkedIn. It also makes headhunting operations. A number of
companies, especially the one in production take CVs from skilled workers
at the factory’s gate. Those CVs are usually pre-printed forms, on which
the candidate just checks some boxes.

A typical CV comes usually in a standard form. For example, in Europe
there is a popular “European” CV format. It includes even the candidate’s
picture, especially useful when hiring a secretary for the top management.
The problem arrives from different CV/Resume formats, all of the
containing the same information, just organized in different forms.

A solver must identify at least some basic fields in the CV, like name, date

1http://en.wikipedia.org/wiki/Human resource management on January 27, 2014

15.1. HR APPLICATION BASICS 463

of birth/age, sex, contact data, education, skills and experience. This is
the basic data that needs to be extracted for free-form CVs.

The CV may be received in various formats. For example, PDF, HTML
(when downloaded from a website), a scanned document or even as TXT.
The solver must create an independent procedure for extracting data from
a CV, regardless its format. It must create a function similar to this:

1 import standard.lib.poppler

2 import standard.lib.ocr

3 import standard.C.io

4 include HTMLTrimmer.con

5 include DocX.con

6

7 class Main {

8 ExtractPDFText(string filename}) {

9 var pdf = PDFLoad(ReadFile(filename), "", var err);

10 var res = "";

11 if (pdf) {

12 var pages = PDFPageCount(pdf);

13 for (var i = 0; i < pages; i++) {

14 res += PDFPageText(pdf, i);

15 res += "\n";

16 }

17 PDFClose(pdf);

18 } else

19 throw "Error opening pdf file ($err)";

20 return res;

21 }

22

23 GetCVAsText(string filename) {

24 var ext = ToLower(Ext(filename));

25 switch (ext) {

26 case "pdf":

27 // no break needed here, because

28 // the function will return

29 return ExtractPDFText(contents);

30 case "png":

31 case "bmp":

32 case "jpeg":

33 case "jpg":

34 case "tiff":

35 if (!OCR(filename, var data))

36 return data;

464 CHAPTER 15. PROBLEMS AND SOLUTIONS

37 throw "Error performing OCR";

38 case "htm":

39 case "html":

40 return HTMLTrimmer::(ReadFile(filename), 0xFFFFFF,

0xFFFF, true);

41 case "docx":

42 return DocX::GetText(filename);

43 case "txt";

44 return ReadFile(filename);

45 }

46 throw "Unsupported format";

47 }

48

49 Main() {

50 var text = GetCVAsText("CVExample.pdf");

51 // now in text we have the actual text in the cv,

52 // independent of the given format (it may be pdf, scanned

53 // document or plain text)

54 }

55 }

Using the HTMLTrimmer the solver could load CV’s in HTML format and
extract the text from there. The HTML trimmer class enables the
programmer to cut HTML text to a maximum of length. It also enables
the programmer to extract plain text from HTML documents by using the
HTMLTrimmer::Go function:

static Go(string html, number max_len, objects=-2,

return_plain_text=false);

The max len parameter, specifies the maximul length of the text contained
by the returned result. If result is not plain text, the tags will
automatically be closed, ensuring the HTML content remains valid. objects
is the maximum number of images before the HTML content gets cut. In
our case, the function is only used for converting HTML to text, by setting
the return plain text parameter to true.

The DocX class, allows reading contents from a .docx file as plain text.
Docx files are simply zip archives containing some XML files. The DocX
class opens the .docx files as archives, identifies the content XMLs and
performs a transformation, using an XSL template, to plain text.

15.1. HR APPLICATION BASICS 465

This step is called normalization, where documents if various formats are
converted to a format that the system will be able to analyze.

After the normalization, the system must correctly identify phone numbers
and e-mail addresses. For contact information, the candidate will not
necessary have a trigger word, for example, “e-mail:
maria@devronium.com”. It may just add an e-mail address under his or
hers name. The same goes for phone numbers. For this, the regular
expressions are great.

import standard.C.io

import standard.lib.preg

[..]

class Main {

[..]

Main() {

var text = GetCVAsText("CVExample.pdf");

var email_arr=preg(text,

"[A-Za-z0-9_\\.\\-]+\\@[A-Za-z0-9_\\.\\-]+\\.[A-Za-z0-9_\\.\\-]+");

echo email_arr;

}

}

Assuming that the CVExample.pdf has a structure similar to:

Marie White

marie@devronium.com
The rest of the resume goes here

The program will return [“marie@devronium.com”]. When a CV will
contain multiple e-mail addresses, each of the them will be contained in
the returned array. The use of regular expressions for identifying data is
great for free-form documents.

For identifying the name, the task may be a little difficult. Usually is the
first line in a CV, but the solver should exclude noise words like
Curriculum Vitae or Resume.

After correctly identify the basic data in a CV, the system will load

466 CHAPTER 15. PROBLEMS AND SOLUTIONS

standard fields in a database, for easy searching. However, an end-user will
want to perform natural language searches. For example, “engineers
willing to relocate with good spoken English”. For this, Xapian will be just
perfect. Every text blob returned by GetCVAsText may be indexed by
Xapian, and the end-user may perform the searches in natural language.

Note that the difference between a great application and a mediocre one is
the search. In most data-driven applications, the search is essential. SQL
queries are NOT searches. For example, “select * from cvs where keywords
like ’%engineers willing to relocate with good spoken English%’” it will not
return any data. Also select..where statements will never perform any
raking of the results. Probabilistic search engines, like Xapian, rank items
based on measures of similarity (between each item and the query,
typically on a scale of 1 to 0, 1 being most similar) and sometimes
popularity or authority or use relevance feedback2. As a secondary
advantage of using true search in an application, is the speed. Probabilistic
search engines are incredibly fast, being able to look in millions of
documents in under half a second.

The solver has created now a method of importing a CV into a database, a
procedure for searching the data. Similar to the CRM application, the HR
staff needs to be able to add comments, statuses and schedule interviews.
An interview may be by phone or face to face.

The recruiters must be able to create shortlist, containing selected
candidates. Each candidate may be tested. It may have to pass
psychological or aptitudes tests. Different candidate markers may be used.

The solver will use the following entities:

Candidates
the actual candidate list (the CV database)

Positions
the open positions

Employees
the employees

2Source: http://en.wikipedia.org/wiki/Search engine (computing) on January 27,
2014

15.1. HR APPLICATION BASICS 467

Candidates will be

Interviewed
the schedule and actual interview feedback

Selected or declined
if selected, the candidate will be added to a shortlist

Tested
the candidate will be tested, if necessary

For each position, a shortlist will be created, containing a few
recommended candidates for the given position. Then the recruiters will do
their job, one or more of the candidates, with the specialized department
from the company. For example, the HR gals will create the shortlist for an
open position in engineering. With the engineering department, will hire a
candidate or more. If a candidate is not hired, it will have all the history
in the system, for later openings. The HR department may also need black
list, for candidates that will not be contacted for any other opening.

The solver may add some performance or statistical reports. For example,
from the total of seen candidates, how many were hired.

Some communications methods may be added, for example, an automatic
mailing keeping the candidates informed with openings. Alternatively,
SMS gateways or automated calls may be used.

A solver may over-engineer a HR application by adding automatic
recommendations, for a given position, based on the data collected from
the HR end-users. For example, if an user performs some searches for the
opening in “Software development”, and checks out some CVs, the system
will record its behavior, and then use the slope one algorithm to generate
recommendations for others, or for the user itself.

Slope One is a family of algorithms used for collaborative filtering,
introduced in a 2005 paper by Daniel Lemire and Anna Maclachlan.
Arguably, it is the simplest form of non-trivial item-based collaborative
filtering based on ratings. Their simplicity makes it especially easy to
implement them efficiently while their accuracy is often on par with more
complicated and computationally expensive algorithms3.

3http://en.wikipedia.org/wiki/Slope One on January 27, 2014

468 CHAPTER 15. PROBLEMS AND SOLUTIONS

For using slope one recommender, the solver may encode the end-user’s
action to different values. For example, a black-listed candidate will be
rated with 0, an opened CV will be 1, a contacted candidate will be rated
with 2, an interviewed candidate with 3, a tested candidate with 4, a
candidate that maded to the short list is 5 and a hired candidate is 6
(though it will not be used in our example). For better understanding an
algorithm, will use a minimalistic set of open positions and candidates.

Position Marie White Jack Black Eddie Brown

Software developer 5 3 1

Analyst 2 1 4

Software tester 3 1 ?

Let’s assume that an end-user scheduled an interview with Marie’s, after
seeing her resume, and then looked at Jack’s resume. The system now may
calculate what the user will do with Eddie.

We see that for the software developer position, Eddie was rated lower
than Marie by 4 and lower than Jack by 2. For the analyst position, Eddie
was rated higher than Marie by 2 and higher than Jack by 3. This means
that on the average, Eddie is rated −4+2

2 = −1, in relation with Marie, and
−2+3

2 = 0.5 in relation with Jack.

For the software tester, Eddie, should score 2 (3 - 1) in relation with
Marie, and 1.5 (1 + 0.5) in relation with Jack. In the end, the Eddie will
most likely score 1.75, from computing:

2×Marierc+1.5×Jackrc
Marierc+Jackrc

Where Marierc is the ratings count for Marie (2, in our case, one for
Software devloper, and one for Analyst), and Jackrc is the ratings count
for Jack.

This means that Eddie is most likely to be contacted by the user or at
least seen (1.75 may be rounded to 2). It is a very simple algorithm with
almost magical impact to the end-user. It may be used on any other
application, needing a form of automated recommendation to the end-user.

I’m a big fan on these kind of optimization, and I recommend it to you
too. For up to a few hours of extra work, the application may be a

15.2. TELCO BILLING BASICS 469

pleasant surprise to the end-user, and a happy end-user, means greater
chances of success in the implementation.

15.2 Telco billing basics

A few years ago, I’ve implemented a CRM for a telecommunication
company. It was a fun project, because it dealt with a small but growing
local company. It provided both telephony and Internet access services.
Their problem arrived from the fact that the billing was done almost by
hand, by using an in-house billing software, in which some text exports
from the softswitch were loaded and then parsed. A softswitch, short for
software switch, is a central device in a telecommunications network which
connects telephone calls from one phone line to another, across a
telecommunication network or the public Internet, entirely by means of
software running on a general-purpose computer system. Most landline
calls are routed by purpose-built electronic hardware; however, soft
switches using general purpose servers and VoIP technology are becoming
more popular4. The software work great, the only problem it was that it
needed monthly inputs, while synchronizing commercial data with the
billing system. They wanted the unification of the commercial data, with
billing, technical support, equipment management, and accounting
software integration.

At that time, the ported numbers were a bit of a problem, because of
different cost per minute for different operators. Also, their clients had a
few subscriptions and extra options, with different quantum pricing. For
example, if a client used the phone for 40 seconds, a minute was charged.
For other subscription, only the calls lasting for less than a minute were
rounded to a minute. Another service is the toll-free telephone number,
which is free for the calling party, and instead the telephone carrier charges
the called party for the cost of the call.

The Internet service billing was straight forward, since it were only fixed
subscriptions. The system automatically managed the bandwidth,
according to the client’s subscription.

Another job for the system was to suspend the services for the debtors or

4http://en.wikipedia.org/wiki/Softswitch on January 27, 2014

470 CHAPTER 15. PROBLEMS AND SOLUTIONS

for security reasons. For example, a subsystem analyzed all the calls for a
specific client, and if it detected a high volume of international calls, in a
short period, originating from the same number, it suspected an attack on
the client and generated some alarms.

The billing sub-system uses only the following entities:

The client
identifying the client with billing and service addresses

The contract
identifying the client’s contract(s)

The subscription(s)
the client subscriptions for a given contract

The allocated phone number(s)/IPs/Username
the service specific data

A loop was created for real-time pre-processing of the telephony data. It
identified the caller phone number, the callee phone number, the route
used, duration and checked the network of origin and destination, checking
also with the ported number database to see if a number was ported at the
date of the call. The loop loaded all the ported number into the RAM, in
an array (key-value). I decided to load everything in memory, for speed,
because additional queries may take some time and generate some
overhead. At the time, there were under 1,000,000 ported numbers, so
keeping them in RAM used about 100MB of RAM. This is reasonable for
the task, because the loop can check very fast if a number is ported or not.

The resulting structure and data:
Timestamp Caller Calee Caller network Calee network Route Duration

2014-01-21 10:23:21 0370481231 0722541001 BeeVoice Vodafone Vodafone 350

2014-01-21 10:23:40 0370480131 0745582759 BeeVoice Orange Orange 132

2014-01-21 10:23:43 0758387592 0370489980 Orange BeeVoice Orange 967

For the toll-free numbers, the Caller and Callee were inverted. This was
done this way for simplifying the analysis when the bill was generated.

The loop pseudo-code:

1 [..]

2 class CallData {

15.2. TELCO BILLING BASICS 471

3 var Timestamp;

4 var Caller;

5 var Callee;

6 var Caller_network;

7 var Callee_network;

8 var Route;

9 var Duration;

10

11 Write() {

12 // write to a database

13 [..];

14 }

15 }

16

17 class Main {

18 [..]

19

20 Main() {

21 var ported = LoadPortedNumbers();

22 while (true) {

23 var call_data = WaitForDataFromTheSoftwSwitch();

24 if (call_data) {

25 var ported_network = ported[call_data.Callee];

26 if (ported_network)

27 call_data.Callee_network = ported_network;

28

29 ported_network = ported[call_data.Caller];

30 if (ported_network)

31 call_data.Caller_network = ported_network;

32

33 call_data.Write();

34 }

35 }

36 }

37 }

When the invoices were generated, the system just analyzed the meta
data, already recorded by the loop, and applied the client’s subscription.
Some clients had options with minutes included in the subscription cost.
On that case, the system charged only the minutes overcoming the
included minutes. The generated invoices are automatically sent by e-mail
to the client.

472 CHAPTER 15. PROBLEMS AND SOLUTIONS

The system keeps track of the invoice collection, and after the given
payment term expired, it automatically blocked the client’s access to
Internet and telephone services.

The billing loop pseudo-code:

1 [..]

2 class Main {

3 [..]

4

5 ProcessPhoneNumber(phonenumber, invoice, service) {

6 while (var call_data = FetchPhoneEvent(phonenumber)) {

7 var duration = call_data.Duration;

8 // if call is less than 60 seconds, get it rounded to

9 // 60 seconds

10 if (duration < service.MinQuantum)

11 duration = service.MinQuantum;

12

13 // assuming that for service.Plan is the subscription

14 // plan, for each outgoing network

15 var call_price = service.Plan[call_data.Calee_network] *

duration/60;

16

17 invoice.Phone_calls_cost += call_price;

18 }

19 }

20

21 ProcessContract(contract) {

22 var client = contract.Client;

23 var services = contract.Services;

24 var len = length services;

25

26 var invoice = new Invoice();

27 invoice.Services = services;

28

29 for (var i = 0; i < len; i++) {

30 var service = services[i];

31 invoice.Total += service.Value;

32 invoice.Tax += service.Tax;

33

34 var phonenumbers = service.Phonenumbers;

35 if (phonenumbers) {

36 var len2 = length phonenumbers;

37 for (var j = 0; j < len2; j++) {

38 var phonenumber = phonenumbers[]

15.2. TELCO BILLING BASICS 473

39 ProcessPhoneNumber(phonenumber, invoice, service);

40 }

41 }

42 }

43

44 invoice.GenerateDocument();

45 invoice.Write();

46 }

47

48 Main() {

49 var contracts = GetContracts();

50 var len = length contracts;

51 for (var i = 0; i < len; i++) {

52 var contract = contracts[i];

53 ProcessContract(contract);

54 }

55 }

56 }

Note that in every complex system, simplicity is what makes it work. Just
remember to split the problems again and again until left only with atomic
problems. Also, try to limit the amount of processing per function, not for
technical but rather for aesthetically reasons. It will be easier to read.

For the Internet connection access, a RADIUS server was used. Remote
Authentication Dial In User Service (RADIUS) is a networking protocol
that provides centralized Authentication, Authorization, and Accounting
(AAA) management for users that connect and use a network service5.

The used RADIUS server is FreeRADIUS, an open source project. Their
setup used a MySQL database for storing the users, and making the
activation/deactivation of an user trivial (plain SQL insert/update and
deletes).

For other equipments, the SNMP protocols and RouterOS APIs were used
to control the network access. Some clients don’t use PPPoE accounts and
are to be suspended/reactivated from specific equipments using
proprietary protocols.

5http://en.wikipedia.org/wiki/RADIUS on January 27, 2014

474 CHAPTER 15. PROBLEMS AND SOLUTIONS

15.3 User tracking application

Some time it will be needed to track an user. For this, two methods are
available. The first is to track the user after the IP. This provides
localization at the city level. The second one, enables you to read the
location of the user using the GPS or cell towers. This method is only
available for mobile applications.

For the first method, in Concept UI based application you could read the
IP by using the following code:

1 include Application.con

2 include RLabel.con

3 include GeoIP.con

4

5 class MyForm extends RForm {

6 MyForm(Owner) {

7 super(Owner);

8

9 // get the remote IP

10 var ip = GetRemoteIP();

11

12 var g = new GeoIP();

13 // open the GeoLiteCity database

14 var arr = g.Open("GeoLiteCity.dat");

15 var location = "-1, -1";

16

17 if (arr)

18 location = arr["latitude"] + ", " + arr["longitude"];

19

20 var label_location = new RLabel(this);

21 label_location.Caption = location;

22 label_location.Show();

23 }

24 }

25

26 class Main {

27 Main() {

28 try {

29 var Application = new CApplication(new MyForm(null));

30 Application.Init();

31 Application.Run();

32 Application.Done();

15.3. USER TRACKING APPLICATION 475

33 } catch (var Exception) {

34 echo Exception;

35 }

36 }

37 }

This will give you an approximate location of the user (with an error of 5
miles ore more). This method works for desktop computers and mobile
applications.

The second way, works only with phone and tables (Android and iOS).

1 include Application.con

2 include RLabel.con

3

4 class MyForm extends RForm {

5 MyForm(Owner) {

6 super(Owner);

7

8 // query the client for location

9 var location = CApplication.Query("Location", false);

10 // show only the last location

11 if (location)

12 location = StrSplit(location, ";")[0];

13 var label_location = new RLabel(this);

14 label_location.Caption = location;

15 label_location.Show();

16 }

17 }

18

19 class Main {

20 Main() {

21 try {

22 var Application = new CApplication(new MyForm(null));

23 Application.Init();

24 Application.Run();

25 Application.Done();

26 } catch (var Exception) {

27 echo Exception;

28 }

29 }

30 }

476 CHAPTER 15. PROBLEMS AND SOLUTIONS

This method will give an exact location. Note that is no guarantee that
the GPS location will be used. By default, Concept Client doesn’t turn the
GPS on, because it will drain the battery. It uses some passive location
methods, or cell tower locations, which have almost zero impact on the
battery.

Note that the Query(”Location”, false) function call may return a series of
locations, separated by “;”. The format is “latitude now, logitude now;
previous latitude, previous longitude”.

A solver may need to link different end-user actions with locations. For
example, in a on-site support service, a dispatcher may track the site
teams by using mobile concept applications.

This may also be useful for refining searches in applications or attaching
coordinates to pictures. However, this system should not be used as a sole
localization method for emergencies because its precision is variable. It
may range from a few meters to 10 miles or more. In general, the
localization is exact in cities, but rather approximate for rural areas.

You may want to overlap the location data with map services, for example,
Google Maps.

MobileLocationTest.con

1 include Application.con

2 include RWebView.con

3

4 class MyForm extends RForm {

5 MyForm(Owner) {

6 super(Owner);

7

8 // query the client for location

9 var location = CApplication.Query("Location", false);

10 // show only the last location

11 if (location)

12 location = StrSplit(location, ";")[0];

13

14 var webview = new RWebView(this);

15 var content = ReadFile("GoogleMaps.template.html");

16 content = StrReplace(content, "[CENTER]", location);

17 webview.Content = content;

18 webview.Show();

15.3. USER TRACKING APPLICATION 477

19 }

20 }

21

22 class Main {

23 Main() {

24 try {

25 var Application = new CApplication(new MyForm(null));

26 Application.Init();

27 Application.Run();

28 Application.Done();

29 } catch (var Exception) {

30 echo Exception;

31 }

32 }

33 }

The used template:
GoogleMaps.template.html

<!DOCTYPE html>

<html>

<head>

<meta name="viewport" content="initial-scale=1.0,

user-scalable=no" />

<meta http-equiv="content-type" content="text/html;

charset=UTF-8"/>

<style type="text/css">

html, body {

height: 100%;

margin: 0;

padding: 0;

}

#map_canvas {

height: 100%;

}

@media print {

html, body {

height: auto;

}

#map_canvas {

height: 650px;

478 CHAPTER 15. PROBLEMS AND SOLUTIONS

}

}

</style>

<script type="text/javascript"

src="http://maps.googleapis.com/maps/api/js?sensor=false">

</script>

<script type="text/javascript">

function initialize() {

var myLatlng = new google.maps.LatLng([CENTER]);

var myOptions = { zoom: 13, center: myLatlng,

mapTypeId: google.maps.MapTypeId.HYBRID}

var map = new

google.maps.Map(document.getElementById("map_canvas"),

myOptions);

}

</script>

</head>

<body onload="initialize()">

<div id="map_canvas"></div>

</body>

</html>

Figure 15.1: MobileLocationTest.con output

The output is shown in figure 15.1.

The localization can be integrated in a wide range of applications.

Chapter 16

GyroGears - the CAS
application generator

16.1 What is GyroGears and why use it

GyroGears is an MDE tool developed for the Concept Application Server
that can generate production-ready multi-user, transactional applications.
In two words, GyroGears is an application generator. Model-driven
engineering (MDE) is a software development methodology which focuses
on creating and exploiting domain models (that is, abstract representations
of the knowledge and activities that govern a particular application
domain), rather than on the computing (f.e. algorithmic) concepts1.

GyroGears automatically generates database-oriented applications for CAS
(applications that run in Internet/Intranet) by just specifying the entities.
Entities are somehow high level equivalents of database tables, except that
an entity can be represented on more than one database table.

Gyro will also generate PDF reports, XML/CSV exporting/importing
schema, automatically design the data forms, and even generate the help
files for the application. The resulting application will also contain the
CIDE project file, so you can modify it manually, but this should not be
the case.

1http://en.wikipedia.org/wiki/Model-driven engineering on January 31, 2014

479

480CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Gyro is great for creating CRM, HR, EMR2, ERP3 or any kind of
data-oriented application applications.

All Gyro applications are based on entities, actions, calendar events,
reports and custom Concept sources.

An entity is the basic data element description. Each entity may have
multiple members. A member is a data element property. For example,
User may be an entity, having Username and Password as members.
Entities may be grouped by menu category and entity’s members may be
organized into an unlimited number of categories and subcategories.

Members are defined as high-level data types. The available member types
are:

short string
A string, up to 255 character in length

long string
An unlimited string

secret/password
A secret string, up to 255 characters in length

integer
An integer number

decimal
A decimal number

date/time
Date and/or time

file
A file

boolean
A boolean value (true or false)

choose radio
A list of radio buttons

2Electronic Medical Record
3Enterprise Resource Planning

16.1. WHAT IS GYROGEARS AND WHY USE IT 481

choose combo
A combo box, containing a list of possible values

relation
A relation with another entity

non homogeneous relation
A relation with multiple entities

reference
A reference to an existing relation

picture
A normalized picture

multimedia
A normalized video and/or audio file

direct query
A direct SQL query (for SQL-based applications only)

custom function
A custom Concept function

plug-in
A custom plug-in, for example Google Maps

Each entity definition will create a Concept class, with the same name,
replacing all the non-alphanumeric characters with underscore (“ ”). For
example, an entity named ”Client (new ones)” will have the corresponding
Concept class Client new ones . Each member, will generate a public
variable in the concept class, following the same rules for
non-alphanumeric characters.

File members will generate two Concept class members, one with the same
member as the entity member, and one adding the filename suffix. For
example, if a member is called Document, two variables will be created,
Document and Document filename.

Picture members will have 3 additional members, adding the preview,
thumbnail and filename prefix. For example, a picture member called

Image, will generate Image, Image preview, Image thumnail and
Image filename concept class members.

482CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Multimedia members will have 4 additional members, adding the preview,
thumbnail, totaltime(total play time in seconds), status and filename

prefix. The status member will be “Pending”, “Converted”, “Error” or
“Inconsistent”, according to the multimedia file normalization status.

Each entity will have a Write(Connection[...]) method causing the data to
be stored in a database (SQL or NoSQL).

Actions are custom functions that the user may trigger by pressing a tool
button or menu item. An action may have an associated progress bar and
history. It may be used to process long-timed operations, for example,
sending e-mails to multiple recipients, or creating invoices for all the clients
database.

Calendar events are associations between the entities and the calendar.
The calendar may be exported as iCalendar files (.ical), for importing into
other software or services like Outlook or Google Mail.

The Gyro reports, are defined as XML files, similar with HTML, adding
tags like <datasource>. It allows the direct query for data from the
database (note that this is not supported for NoSQL databases). A report
may contain tables, pie charts, line charts and/or descriptive text. The
resulting report will be generated as an XSL:FO template that can easily
be transformed to PDF or RTF documents.

GyroGears is extremely productive for any kind of data application. It will
generate concept://-based applications, including mobile versions (for
phones and tablets), and http://-based applications.

For example, you could create a CRM application in under an hour or a
user generated content video streaming website in about 30 minutes. Note
that HTTP-based applications are a feature for Concept Application
Server, not a purpose. However, advanced caching mechanisms make the
these applications run very fast, with the minimum resources used.

Note that Gyro is not a solution for everything. It targets explicitly data
oriented applications. For some project, one can use Gyro only for the user
interface and data modeling, the actual data processing algorithms being
written manually.

GyroGears may be opened by URL on any platform:

16.2. APPLICATIONS, ENTITIES AND MEMBERS 483

concept://localhost/MyProjects/GyroGears/GyroGears.con

On Windows, you may use the Start menu, Concept II, Development Tools
and then GyroGears.

16.2 Applications, entities and members

For our first example, a basic event management application will be
created. We will have a list of persons, each person with contact data,
including e-mails, and user photo. Also, a list of events, describing the
event, including start and end time, and the list of invited persons. We will
defined a custom action that will send e-mails to all of the invited persons.
The application will have, desktop PC, HTTP and mobile interfaces.

After opening GyroGears, select “Create new solution”. Gyro will prompt
you to select an application template. We will use the “Empty
application” template, that will create an application containing just the
User entity. You will notice then some application properties that may be
set (not mandatory).

The most important of them are:

Title
The application title (human readable text)

Description
The application description (human readable text)

Icon
Sets the image to be used as the application icon. This image will be
resized by the application itself, but should be around 32 by 32 pixels.

Header
Selects a header (branding image), for the application. This image
should be a relatively small image (Gyro will not resize it). I
recommend the use of 64 by 64 pixels.

Decimal separator
The character to be used as a decimal separator

484CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Thousands separator
The character to be used as a thousands separator

Date format
The date format string. For example, %d/%m/%Y will display
February 3nd, 2014 as “03/02/2014”.

Date/time format
The date format string. For example, %d/%m/%Y %H:%M:%S will
display February 3nd, 2014, 09:30:00 PM as “03/02/2014 21:30:00”.

Use spell checker
If set to Yes, a spell checker will be used (see Spell checker section)

Use spell checker
If set to Yes, a spell checker will be used (see Spell checker section)
for all long strings.

Run in fullscreen
If set to Yes, the application will be standard maximized by default
(recommended)

Optimize for touchscreen
If set to Yes, the application will use an on-screen keyboard had use
slightly larger icons, for easier interaction with touch screens. Note
that this refers to desktop computers having a touch screen. Mobile
and tablet version are optimized for touch screens by default

Init callback function
A function to be called when the application first loads. The
template is

Additional login condition
Sets the log-in condition. It may be a direct SQL condition, if
preceeded by “sql:”, for example: “sql: type=’Technical’” assuming
that the user entity has a member called Type, or a Concept
condition, for example: “LoggedUser.Type==’Technical’”.

static function Initialize(Sender);

Where Sender is either a MainForm or a MobileMainForm. Note
that this function is not called for HTTP applications. Note that this
field must contain only the function name, without the parameters,

16.2. APPLICATIONS, ENTITIES AND MEMBERS 485

for example Misc::OnInitApplication. This function may be used for
general initialization, when needed, for example, checking currency
rates, before the user loads the application.

User data entity
Selects the function holding the user data. This entity is used in the
application login process. The user entity must have at least the
following members (case sensitive): Username (short string),
Password (secret), Full name (short string), Level(integer) and Last
login (date). Additional, the members: Last IP (short string), Failed
attempts(integer), Last session(short string), Process ID (integer)
will provide various information about the logged user, for example,
the last ip from which the user logged in, or the process id, for better
identifying the user process on a server. If Failed attempts is defined,
the user account will be automatically locked after 3 failed logins.
The user entity may optionally implement a Defaults category,
containing default values for various fields (defined in other entities).
For example, if it contains a field named “Name” in the Defaults
category, when an user creates a new object for an entity containing
a member also called Name, the Name field will be automatically
filled with the value in the user defaults Name member. The Level
property is used for setting the entity operation rights (f.e. add,
modify, delete). Additionally, some boolean members for regulating
different user rights may be added, for example, a boolean member
called User/Add will enable the user to add another user if set to
true. This is effective only if the user level is below the entity add
operation level as you will see later. The possible boolean members,
in this case are: User/Add, User/Modify, User/List, User/Search
and User/Delete. This is applicable for every entity, not just the user.

Allow anonymous login
This allows the login without user/password as a level 0 user (lowest
possible level).

Generate Web 2.0 interface
If set to Yes, Gyro will also generate the HTTP version of the
application.

Generate mobile interface
If set to Yes, Gyro will also generate the mobile version of the
application.

486CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Generate Web 2.0 sign up
If set to Yes, and Generate Web 2.0 interface is also set to Yes, it
will generate a sign-up script, for the user to be able to create its
own user. This is very useful for user generated content HTTP
applications.

PDF Command
Sets the XSLT:FO command for processing fo files into PDF. Default
the Apache FOP processor is used (must be installed on the target
system).

Use cool effects
If set to Yes, Gyro will use operating-system dependent effects, like
aero-style transparency (on Windows systems only).

Generate high level APIs
If set to Yes, the GyroGrease ORM APIs will be generated.
GyroGrease is provides a higher API level for dealing with the
GyroGears objects. This is extremely useful when writing custom
code4.

Database connection method
Specified the database connection method. The preferred method is
“Native driver”.

Database rules
Specified the database engine to be used. May be an SQL engine or a
NoSQL engine, like MongoDB.

Datasource
Specified the data source name, when using ODBC, or the
connection string. This method is not recommended, Concept
providing a set of native drivers for directly connecting to the
database server, without any need of ODBC.

We will only set the Title property to ”My first Gyro Application”, and
will select as Database connection method to “Native driver”, and Database

4Object-relational mapping (ORM) is a programming technique for converting data
between incompatible type systems in object-oriented programming languages. This cre-
ates, in effect, a “virtual object database” that can be used from within the programming
language (Source: http://en.wikipedia.org/wiki/Object-relational mapping, on February
3rd, 2014).

16.2. APPLICATIONS, ENTITIES AND MEMBERS 487

rules to SQLite. Also, the Generate mobile interface and Generate
traditional Web 2.0 interface will be set to Yes.

The entities are added by right clicking in the application tree view, and
selecting add entity.

Each entity has a set of properties, the most important of them being:

Name
The entity name (may contain any character, spaces)

Public name
The entity name, as shown to the end-user. If left blank, the entity
name will be used

Comments
Comments or hints shown to the user. Also, this is added to the
automated help.

Render using same space as
Another entity may be selected to share the same space. For
example, an entity called Customer may share the same space (same
table or collection) with another entity called Contact, both of them
using a few common properties, like Name and E-mail. This way,
you can give different rights for different fields, by allowing some user
to edit only the contact related fields for a client.

Use aditional search database
If set to Yes, an additional Xapian database will be used, allowing
the user to perform natural searches on the data.

Use synchronous indexing
By default, the Xapian data is idenxed asynchronously, by using a
background Queue, called DoIndexForEntityName.con, where
EntityName is replaced by the entities normalized name. If this
property is set to Yes, the data will be indexed when is
added/modified, resulting in a simpler system (no background
queues), but with some latency when adding data in big sets.

Menu category
Sets the menu category for the entity. This is a free text field.
Entities having the same category will be displayed in the same
menu.

488CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Read only condition
A condition making the object read-only, for example, if an entity
has a boolean member called Closed contact, you can set the
read-only condition to: Closed contract = true

Archive condition
Similar with Read-only condition, but instead of opening the object
as read-only, it automatically sends the object to archive.

Columns in data forms
By default, each entity is shown on a two-column form. Each
member occupies a column cell or an entire row, depending on its
type (for example, long text members occupy a full row).

Columns in mini forms
Sets the default form column count for embedded forms (forms
shown for relational members as embedded forms).

Representative member
Selects the most important member of the entity (eg: for Customer,
may be Name). This member will be shown when the object will be
quick referenced.

Icon member
Selects a picture or a multimedia member to be shown in icon views
(if enabled), representing the given entity.

Template member
Selects a relation member to be used as a template. Templates allow
the user to automatically fill some values in the given object, from
the default values stored in the template. For example, we could
have an entity called Category, and another entity called Product,
having a relation member called Base category, related to Category.
The Base category member is then set as template member. Both
Category and Product have a member called Color. Assuming that
Category has an object, created Vegetable with color set to green,
when the user selects “Vegetable” as Base category, the Color
member will be automatically set to “Green”.

View count member
If set to an integer member, it will automatically increment the
member on each object view.

16.2. APPLICATIONS, ENTITIES AND MEMBERS 489

Short preview expression
If set, instead of the Representative member, this expression may be
used. For example, an entity called Customer may have two
members: Name and Surname. Both of them are important when
quick previewing the entity. In this case, you could set: Name + “ ”
+ Surname as the preview expression.

Mark mandatory fields
Sets the markings for mandatory fields (nefault is Bold).

Sort
Sets the sorting order. Default is ascending, but may be changed to
descending.

Presentation categories
Sets the member presentation category/subcategory list. The
categories are separated by comma, and the subcategories are
separated by slashes from their categories. For example: General
information, Billing/Invoices, Billing/Payments will create two
categories (General information and Billing) and two subcategories
for the Billing category (Invoices and Payments).

Show categories in
Sets the category UI hint. By default, categories are shown in
notebooks, but that can be changed to frames or expanders.

Show subcategories in
Sets the subcategory UI hint. By default, subcategories are shown in
frames, but that can be changed to notebooks or expanders. Note
that not all categories may be supported on all platforms, but
notebooks and frames are similar on HTTP, mobile and desktop pc
applications.

Row marking method
Each object/row may have a marking hint. For example, if set to
“Color”, the given row will use the color returned by the Row
marking function. Alternatively, text, markup, progress bars or
images may be used for marking a row.

Row marking function
Returns the object markings flags. The function form is:

static function Mark(obj);

490CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

For example, if Mark is defined in the Misc class, a correct value for
this field would be Misc::Mark. Assuming that the target entity has
a member called Value, we could set to red all the rows with a value
less than 10:

1 class Misc {

2 static Mark(obj) {

3 if (obj.Value < 10)

4 return "#FF0000";

5 // empty string means default color

6 return "";

7 }

8 }

In a similar mode, the Mark function, may return RImage objects
containing the needed image. As a suggestion, avoid creating too
many images. Is better to create a few image that would get recycled
for each call. For this, you could use the GLOBALS() function, that
stores a global array (the only global variable used by Concept).

1 class Misc {

2 static Mark(obj) {

3 if (obj.Value < 10) {

4 var img = GLOBALS()["LessThanZero"];

5 if (!img) {

6 // no parent

7 img = new RImage(null);

8 img.Filename = "res/someimage.png";

9 img.Show();

10 // store this image as a global variable

11 GLOBALS()["LessThanZero"] = img;

12 }

13 return img;

14 }

15 return null;

16 }

17 }

The use of global variables is strongly discourages, but in some
limited cases, they are needed. For progress column, you just need to
return the progress value as a number in the [0..100] interval.

Row hint function

16.2. APPLICATIONS, ENTITIES AND MEMBERS 491

Each object/row may have a hint, showed as a string. The function
has the following prototype:

static function GetHint(Connection, obj);

It should return a string to be shown as a hint to the user, when it
hovers the mouse over the given row/object.

Show parent in views
If set to Yes, a special column will be added in views, showing the
object’s parent. For example, Customer has a relation member called
Invoices, in an exclusive relation with Invoice. When listing all the
Invoices, the Customer name will be shown as a special column.

Parent level
Specifies the parent level. For example, Customer has an exclusive
relation to an entity called Contract, having an exclusive relation to
an entity called Invoice. If you want in an Invoice master view, to see
the customer name, then parent level should be 2 (parent level 1 is
contract, 2 is customer).

Show parent as chain
If set to Yes and Parent level is 2 or more, all the parents will be
shown, each in its own column.

Search by parent
Enable the user to search by parent.

Child search level
If more than 0, when a quick database search will be performed, the
system will also look in the related entities. If set to 1, just the first
level of child entities will be looked up. If set to 2, it will also look
into the child’s children.

Master UI Model
Sets the master user interface model. It may be “Classic
search/results”, “Vertical master/detail”, “Horizontal master/detail”
or “Single pane”. See figure 16.1.

Child UI Model
Sets the child view user interface model. It may be “Classic” or
“Single pane”. See figure 16.1.

492CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Figure 16.1: Application UI design patterns

Figure 16.1 illustrates the basic UI patterns in data-driven applications.

For each entity, the operating level and rules may be specified by using the
operation and rights properties. Usually you will need to set the following
properties:

Enable find
If set to No the search features will be disabled for all users

Find level
Sets the minimum user level that is allowed to search this entity (see
the Level member for the User entity)

Aditional find rights
Additional rights for users of lower level. May be a combination of
same user, same group or neither. This allows a user that has no
search rights, to search objects that are owned by him or her.

16.2. APPLICATIONS, ENTITIES AND MEMBERS 493

Enable list
If set to Yes, the views will automatically load some sorted objects,
without any search being made.

List level
Set the minim user level that is allowed to list and browse to the
objects.

Aditional list rights
Additional browsing rights for users of lower level.

Filter user by member
If an user has no listing rights, but the given entity has, for example,
an Responsible member, a non-exclusive relation to the User entity,
you may set it as a filter for user rights. This means, that if the
Responsible references the current logged in user, it will be available
for browsing.

Filter by level
Sets the minimum user level for using Filter user by member.

Enable add operations
If set to Yes, the an user will be free to create an unparented object.
When set to No, these objects can be only added from exclusive
relations.

Add level
Sets the minim user level allowed to add an object.

Public data
If set to yes, the data will be public on HTTP applications. This
means that the data will be available as read-only to anonymous
users.

Enable modify
If set to Yes, objects can be modified

Modify level
Sets the minimum user level allowed to modify an object.

Aditional modify rights
Additional rights for users of lower level. May be a combination of
same user, same group or neither. This allows a user that has no
modify rights, to modify objects that are owned by him or her.

494CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Enable delete
Enables the delete operations

Delete level
Sets the minimum user level allowed to delete an object.

Aditional delete rights
Additional delete rights for users of lower level. For example, an user
may delete only his or hers records.

Controlling the user rights, allows you to manage all the end-user
operation for the Gyro application.

The following properties will control how the entity will behave in views
and in relation with the end-user:

Is settings entity
If set to Yes, the entity will be defined as a singleton. A singleton is
an entity that has only one object (avoid setting Generate views to
Yes in this case).

Reorderable
Allows the user to reorder the objects in the master views by using
the mouse and drag and drop operations. This operation is not
available on HTTP application.

Autosave (disable Cancel option)
Disables the Cancel option in data forms, forcing the user to save the
modified data

Generate views
If set to Yes, will generate master views for the entity. It will
generate a list of entity’s object in the main form.

Owned
If set to Yes two virtual members will be added to the entity: UID
(Owner user ID, the user who created the object) and MID (ID of
the user that last modified the object).

Group owned
If set to Yes, the GID (Group ID) virtual member, will be added,
holding the ID of the group object.

16.2. APPLICATIONS, ENTITIES AND MEMBERS 495

Archive
If set to Yes the entity will have an archive flag. Archived objects are
hidden in master views.

Refresh in real time
If set to Yes, the master views will be refreshed automatically when
the data object on the screen are modified by another user. This is
available just for concept:// applications.

Require cancel confirmation
If set to Yes, when an user closes a form with unsaved data, a
message box will be shown to the user, asking for operation
confirmation

Show in toolbar
If set, will show the entity icon in the application tool bar

Show text in toolbar
If set, will show the entity name in the tool bar. For this to work,
Show in toolbar must first be set to Yes.

Edit without locking
By default, the application will lock any object being edited. When
this property is set to Yes, it will allow multiple users to edit the
same object. This however is not recommended, because in may
cause data inconsistencies.

Available in HTTP version
If set to No, the entity will not be available in the HTTP version of
the application.

Static link in HTTP scripts
If set to Yes, the entity will be linked to all the generate scripts. This
is useful for data that needs to be available on all the generated
pages.

Available on mobile devices
If set to No the entity will not be available in mobile applications.

Define quick reports
When set to Yes, Gyro will automatically generate automatic
reports, enabling the user to export data from master views to PDF,
RTF, CSV, XML or Excel files.

496CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Show views as icons
If set to Yes, will use icon views instead of tree views for master
views. The icon view will only show the Image member and the
Representative member.

Use single clicks in views
For editing in master views, use mouse click instead of double-click.
This applies only to concept:// application for desktop PC.

Show lists as icons
Show child views as icon views instead of tree views.

Use single clicks in lists
For editing in child views, use mouse click instead of double-click.

List item expression
If set, will use the given expression, similar to Quick preview
expression, as a markup field to be used in related lists and combo
boxes.

Timestamped
Adds the CTIME and MODTIME virtual members, holding the
creation time and respectively, the last modification time, as a string
in the “YYYY-MM-DD HH:mm:ss” format.

Enable versioning/reviews
If set to Yes, previous version of an object will be stored in the
database as revisions. This enables the end-user to see how did an
object look before it was modified.

Show linked entities
If set to Yes, it shows all the linked entity objects. This is useful for
non-exclusive relation, when the user may want to know what
objects are linking to the given object.

Show as tree when possible
If set to Yes, it will group the similar objects in a tree view, after the
given Aggregation expression.

Aggregation
Sets the aggregation funciton. For example, you could group objects
in a master view by UID member, to group objects belonging to the
same user. In this case the expression is: “” + UID. This will

16.2. APPLICATIONS, ENTITIES AND MEMBERS 497

convert the UID member to a string and use it as a key for
aggregation.

Page size
Sets the number of items in a view page.

Entities may also have triggers. Triggers are functions that are
automatically called when an entity object is modified.

The triggers are:

Validation function
This function is called just before an entity is written in the
database. It returns true if the calling object is valid.

static function Validate(Sender, obj, var error_text);

Sender is the sender form (may be null), obj is the entity object, and
error text is the human readable error text to be shown to the user.
This function must return true for valid objects or false if the given
object is not valid.

Default click function
This function is called when the user double clicks an object, usually
replacing the edit operation. The function prototype is:

static function EntityClick(Sender, obj);

Sender is the sender form, obj is the entity object. If this function
returns -1, the default behavior will follow. If it returns 1, the
application will reload all the objects (assuming the object was
modified). Any other return values will be ignored.

Create trigger function
This function is automatically called after an object was successfully
inserted into the database.

static function EntityCreate(Connection, obj);

Connection is the database connection handle, and obj is the target
entity object added to the database.

498CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Delete trigger function
Called after an object was deleted.

static function EntityDelete(Connection, obj_or_id);

Connection is the database connection handle. obj or id is the target
entity object or the entity ID. You should check the type by checking
classof obj or id.

Update trigger function
This function is called after an entity object was updated in the
database.

static function EntityUpdate(Connection, obj, prev_obj);

Connection is the database connection handle, obj is the updated
entity object. prev obj is the previous version of the object. Note
that this parameter may be null.

Archive trigger function
Called after an object was archived or unarchived.

static function EntityArchive(Connection, obj_id,

archive_flag);

Connection is the database connection handle, obj id is the updated
entity object ID (not the object itself). For retrieving the object
itself, a call to Entity::FindById(Connection, obj id) may be needed,
where Entity should be replaced with the entity’s normalized name.
archive flag is a numeric (boolean) parameter. It is true if the object
was archived, false if the object was unarchived.

Link trigger function
This is called after an entity was linked to another entity via a
relation member.

static function EntityLink(Connection, obj, string

rel_entity_name, string rel_member_name, rel_obj_id);

Connection is the database connection handle, obj is the linked
entity object. The rel entity name parameters contains the entity to
which the linking is done, as a string holding the normalized entity

16.2. APPLICATIONS, ENTITIES AND MEMBERS 499

name. Analogously, rel member name keeps the related entity
member normalized name, as a string. rel obj id keeps the ID of the
related entity.

Unlink trigger function
This is called after an entity was unlinked from another entity via a
relation member.

static function EntityUnlink(Connection, obj, string

rel_entity_name, string rel_member_name, rel_obj_id);

Connection is the database connection handle, obj is the unlinked
entity object. The rel entity name parameters contains the entity to
which the unlinking is done, as a string holding the normalized entity
name. Analogously, rel member name keeps the related entity
member normalized name, as a string. rel obj id keeps the ID of the
related entity.

Before create trigger function
This function is automatically called when an object is about to be

inserted into the database.

static function EntityBeforeCreate(Connection, obj);

Connection is the database connection handle, and obj is the target
entity object to be added to the database.

Before delete trigger function
Called just before an object is deleted.

static function EntityBeforeDelete(Connection, obj_or_id);

Connection is the database connection handle. obj or id is the target
entity object or the entity ID.

Before update trigger function
This function is called before an entity object update to the database.

static function EntityBeforeUpdate(Connection, obj, prev_obj);

Connection is the database connection handle, obj is entity object to
be updated. prev obj is the previous version of the object. Note that
this parameter may be null.

500CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Before archive trigger function
Called before an object is archived or unarchived.

static function EntityBeforeArchive(Connection, obj_id,

archive_flag);

Connection is the database connection handle, obj id is the updated
entity object ID (not the object itself). archive flag is a numeric
(boolean) parameter. It is true if the object will be archived, false if
the object will be unarchived.

Before link trigger function
This is called before an entity is linked to another entity via a
relation member.

static function EntityBeforeLink(Connection, obj, string

rel_entity_name, string rel_member_name, rel_obj_id);

Connection is the database connection handle, obj is the linked
entity object. The rel entity name parameters contains the entity to
which the linking is done, as a string holding the normalized entity
name. Analogously, rel member name keeps the related entity
member normalized name, as a string. rel obj id keeps the ID of the
related entity.

Before unlink trigger function
This is called before an entity is unlinked from another entity via a
relation member.

static function EntityBeforeUnlink(Connection, obj, string

rel_entity_name, string rel_member_name, rel_obj_id);

Connection is the database connection handle, obj is the unlinked
entity object. The rel entity name parameters contains the entity to
which the unlinking is done, as a string holding the normalized entity
name. Analogously, rel member name keeps the related entity
member normalized name, as a string. rel obj id keeps the ID of the
related entity.

All the triggers must be set in Gyro without any parameters. For
examples, a valid value for Create trigger function may be

16.2. APPLICATIONS, ENTITIES AND MEMBERS 501

Misc::CustomerCreateTrigger. Note the triggers are mostly notifiers, and
the returned result is not used. The Before* triggers could oppose to an
operation by throwing an exception, but this is not recommended. The
validation function is the only trigger that could stop a write operation
gracefully, providing a human readable message.

Knowing what the entity flags and triggers are, now we can return to our
first application. We defined an entity named Customer, archivable,
owned, timestamped and with Generate views set to Yes. We also defined
the Event entity, archivable, owned, timestamped and with generated
views (similar to Customer). Now we should add members to them.

All entities have a virtual member called ID. For SQL is a numeric value,
for NoSQL databases is a string value. The ID property uniquely identifies
the entity object, and cannot be modified by the programmer or the
end-user. An empty ID or an ID of -1 values means that the object is not
yet written in the database. After a successful call to Write, the ID will be
automatically set.

Each member, regarding its types, has some specific properties. A list with
frequent used properties for members, regardless of the type is:

Name
The member name (may contain any character, spaces). Not that
must be not the same as its entity name.

Public name
The member name, as shown to the end-user. If left blank, the
member name will be used

Category
The category and subcategory, if needed. The categories are defined
by its parent entity.

Comments/Description
Comments that Gyro will use in the help section.

Default value
The default value for the given member

Validation

502CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

A Perl regular expression for validating the input. This is very useful
for string members that need a strict format, for example an e-mail
address. An e-mail address may use

[A-Za-z0-9_\.\-]+@[A-Za-z0-9_\.\-]+\.[A-Za-z0-9_\.\-]+

as a validation expression for ensuring that the user enters a correct
e-mail address.

Init function
Sets the default function. It may be a concept function or an SQL
query, returning a single row and one column. In this case, the “sql:”
prefix should be added, for example: sql: select max(val) + 1 as
result from table would be a valid initialization. Note that this
method works for SQL databases only. Alternatively, you may call a
Concept static function, having the prototype:

static function MyMemberInit(obj, default_user_data);

The function should return the value for the given member. obj is
the target entity object containing the member, and
default user data may be null or a key-value array containing user
defaults values (the User members in the Defaults category, if any).
In this case, a valid value would be: Misc::MyMemberInit.

Attached formula
Concept expression or SQL query to be executed every time the
object is modified. It must be prefixed by the sql: prefix, similar to
the Init function. The SQL query must return a single row, single
column result. If not prefixed by the sql: prefix, the expression will
be regarded as a standard Concept expression. For example: Value *
Quanity will return the product between a member called Value and
a member called Quantity.

Read-only condition
Sets the read only condition, for the given member. It is similar to
the read-only condition for the entity, but applies only to the current
member.

Hint provider function
Calls a function for setting the hint for the used Concept UI object
rendering the member.

16.2. APPLICATIONS, ENTITIES AND MEMBERS 503

static function ProvideHint(Sender, UIControl, obj);

The sender is the form showing the obj entity object, and UIControl
is the control used to render the object. It may be a RTextView for
long strings, REdit for short string, integer or decimals, a RTreeView
or RComboBox for relation and a generic box for other data types.

Mandatory
If checked, the member will be mandatory (a value must be set). For
string data types, at least one character will be needed, for integer
and decimal, a non-zero value will be required. Note not to check
mandatory for boolean members, except for terms-and-condition
style entities (where the user needs to check that has read some
information), because it will force the user to set the member to true.

Unique
If checked, force the value to be unique for the entity. If the member
is not mandatory, an empty value will be not checked for uniqueness.
This applies to short strings, long strings, decimal, integers,
booleans, choose combos and radios. For multimedia, picture and file
data types, this will apply only to the movie/picture or file name.
For non-exclusive relation, if set, will ensure that a related object is
added just one time per member.

Reload original unique data
If checked, for unique members, will prompt the user to load the
original object having the same value as the entered one.

Enforce user link
If set, will perform the uniqueness check only for entity objects
created by the logged user.

Advanced search
If set, will generate the advanced search filters for the given member

Use in sorting
If set, will use this member in the default sorting

Settable to all
Generates the “Set to all” option in the concept:// application UI,
enabling the end-user to set the same value for multiple objects
simultaneously.

504CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Pattern search
When using simple database search, automatically look for patterns,
instead exact matches. For example, the end-user will be able to
search for a fragment of the customer name, instead of forcing an
exact match

Trim
For short string and long string members only, if set, it will
automatically trim extra trailing and/or leading spaces or new lines
from the user input.

Indexable
If set, and the Use additional index database is set to true for the
database, this member will be indexed by Xapian. This is available
only for string decimal and integer members.

Hide in forms/views/title
Hides a member in the views or forms. Also you may only hide the
title, letting the field visible.

Generate quick statistic
If set, generates a quick pie chart on the concept:// application home
screen, with all the distinct values for the given value. This is
recommended only for fixed sets values, for example, choose combos
and radios, booleans and non-exclusive relations with small lists. For
bigger datasets it may generate some performance problems.

Editable in views
If set to true, the given field may be editable directly in views,
without any need to open the entity form.

Read only
If set, the member will be read-only

Use alternative widget
If set, the small widgets will use the one entire form row, and the big
widgets, like long string members, will use small amounts of space.

Not available on HTTP/mobile
If set to true, the member will not be available on HTTP or mobile
versions

16.2. APPLICATIONS, ENTITIES AND MEMBERS 505

Triggers update on focus out
If set, it will trigger the attached formula update for other members.
For example, a member called Quantity may trigger an update to a
member that performs a computation, for example Value * Quantity.

As a special case, relation members implement some additional properties,
like:

Relation with
Selects the entity to relate with

Relation type
Selects the relation type. For exclusive relations, it may be one to
one, one to at least one, one to any (zero or more) or one to custom.
For non-exclusive relations, it may be many to one, many to at least
one, many to any (zero or more) or many to custom. The * to one
relations accept exactly one item.

Duplicable
If this flag is set, when an user duplicates the parent entity (the one
having the relation member), it will also duplicate this relation. If
the relation is exclusive, it will duplicate all the child objects of this
member.

Reorderable
Allows the user to reorder the items in the relation by using the
mouse (not available on HTTP version)

Add by
This applies only to exclusive relations with entities having a
non-exclusive relation. For example, Invoice, Sold Product and
Product are 3 entities. Invoice has an exclusive relation with Sold
Product, that has a non-exclusive relation to Product. Then, for
Invoice, the end-user could create Sold Product objects, by selecting
only selecting the Product from a drop-down list. This is called a
triple relation.

Filters
This applies only to non-exclusive relations or triple relations. It
allows the filtering of the available data by various members and
complex conditions. All the members are separated by slash (“/”).

506CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Direct SQL filters are enclosed by []. Each filter by have one or two
components. The components are separated by comma. For filters
related to other members of the same entity, just one component is
used. For complex filters, two components are needed, the first one
indicating the source date, and the second one indicating the path to
the current entity. For example, assuming that we have Customer
that has a relation member called Contracts. Each Contract has
multiple Subscriptions and each Subscription has multiple Services
related to Service types (a service template). Assuming that we have
a ticketing application, and an end-user wants to open a ticket for a
client, only for the active services from any of the customer’s
contracts, the filter string would be:

/Customer/Contracts[suspended=0]/Subscription/Services/Service_type,

/Customer/Tickets

Note that only the root element uses the entity name (in our case,
Customer). The path elements use only member names. This is
implemented this way because an entity may have multiple relation
with the same entity, by using different relation members. The
“[suspended=0]” is a direct SQL condition, that will be evaluated by
the database server directly, for the corresponding query. This is only
available for SQL-based database engines. This is the Gyro
equivalent of a join query. This will show only the service type on
which the customer has an open subscription. The second path,
simply represents the path from the Customer to our opening Ticket,
the Customer being the common parent for the Service and for the
Ticket. After stepping over the next few sections you will better
understand this.

Accept multiple selection
For non-exclusive relations, enables the end-user to select multiple
objects at once, by keeping the shift key pressed.

Enable ‘send to option’
Enable the “Send to” (for non-exclusive relations) or “New for” (for
exclusive relations), in the related entity master view, enabling the
user to add items th the current object without opening it first.

Use embedded window

16.2. APPLICATIONS, ENTITIES AND MEMBERS 507

When editing an entity, instead of using another window will render
the related form embedded in the entity form.

Use a combobox
Only for many to one relations, use a combo box instead of a tree
view for rendering the relation member.

Use editable box
For relations rendered as combo box, use an editable combo box,
allowing the user to search items in the combo.

Strict/one per user
Allow just one child item per user.

Returning to the first Gyro application, containing the Customer, Event
and User entities, we should start adding the members. A member is
added by right clicking the parent entity, and selecting “Add member”.

For Customer, add the following members:

Name short string, mandatory, trim, pattern search and advanced search
set

E-mail short string, unique, mandatory, trim, pattern search and
advanced search set. The validation will use the validation (Gyro
should auto suggest it):

[A-Za-z0-9_\.\-]+@[A-Za-z0-9_\.\-]+\.[A-Za-z0-9_\.\-]+

Notes long string, trim, pattern search and advanced search set

The Event entity will have the following members:

Start date with attached time, mandatory, advanced search

End date with attached time, mandatory, advanced search

Description long string, trim, pattern search and advanced search set

Invited customers relation with Customer, many to any (zero or more)

508CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

The Event entity will also be visible on the calendar. For this, a calendar
event should be created, by right clicking on application tree view and
selecting “Add calendar event”.

Each calendar event should have an associated entity, in our case, Event, a
start member, Start, an optional end member, End, and an event
description member, Description. This event will be called Scheduled event.

By right clicking on the application tree view, and selecting “Add action”
we will defined a custom action, called Notify clients. The trigger function
will be Misc::SendEmails. The action function prototype is:

static boolean MyAction(Sender, ProgressForm, parameter=null);

Where Sender is the MainForm and ProgressForm is a custom form,
displaying the progress. If the functions returns non-zero, the progress
form will not be closed automatically, allowing the end-user to read all the
output.

16.3 High level APIs

Gyro provides two level of high level APIs: the Gyro standard APIs and
the GyroGrease optional APIs. The standard Gyro APIs are automatically
generated based on the entity description.

A list describing all the entity APIs is provided bellow. The common
parameters are:

Connection is the database connection object

no blobs is a boolean flag. When is set, the returned object or objects
will not contain large fields (for example, files or pictures) and will be
limited to the short preview length.

UID the logged user ID. When is set to -1, this parameter will be ignored.
This parameter will usually be available just for entities having the
Owned property set to Yes.

GID the logged user group. ID When is set to -1, this parameter will be

16.3. HIGH LEVEL APIS 509

ignored. This parameter will usually be available just for entities
having the Grouped property set to Yes.

Each entity has at least the following data members:

ID read only property, keeping the object id. If ID is -1, the object is not
yet written into the database. A call to Write will then set the ID to
the auto-generated object id.

USERDATA a free variable member, to be used by the programmer
(not used by the framework).

CHANGED FLAG = false meta-data field, used by the UI. If a
value of true means that the object has unwritten changes.

VIEWINDEX = 1 meta-data field, keeping the object index in a set,
when a multiple object result is returned

The APIs are generated individually, for each entity. They may vary in
parameters, according to the entity’s settings. The main APIs are:

object FindById (Connection, id, no blobs=false, lock=false[,
is revision id=false], UID=-1)
id is the id of the object. If lock is set to true, a write lock will be
held on the object. The lock will be released when the current
transaction ends. When an entity has the Enable versioning/reviews
property set to Yes, it will use two actual tables, one for database
objects and another one for the previous versions of the same object.
In this case, is revision id parameter will be present, and if set to
true, the id look-up will be in the revision table. The function will
return the entity object with the given id, or null if not found.

Clone (keep dbid=true, clone=null, number clone metadata=true)
Will clone the current object and return a new object, identical with
the original. If keep dibid is set to true, the cloned object will have
the same id with the original. If the id is not kept, a call to Write
will cause an insert operation in the database. clone may contain an
object to be used (instead of creating a new one). clone metadata
will cause the cloning of all entity meta data (f.e. USERDATA).

510CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

CloneRelations (Connection, source id, UID=-1, GID=-1)
Copies all the relations used by the object from the given source
object id. For exclusive relations, object may be copied, depending of
their Duplicable flag settings. If UID and/or GID is set, only the
objects owned by the given user id and/or group id will be copied.

Write (Connection[, UID=-1][, GID=-1], prev object=null)
Will write (insert or update) the object in the database. The UID
parameter will be only present for entities having the Owned
property set to Yes. GID will be present for entities with Grouped
set to Yes. prev object is an optional parameter containing the
original object (before modification)

Delete (Connection, children=true)
Deletes the current object from the database. If children is true, it
will delete in cascade all its children (based on exclusive relation
members).

static DeleteById (Connection, id)
The static version of Delete, using the id instead of the object itself.
This is a convenient way of deleting when having only the id,
avoiding an extra call to FindById.

static Archive (Connection, id, arc=true, children=true)
Archives (when arc is true) or unarchives (if arc is false) the object
identified by id. If the children is set to true, it will also archive or
unarchive, in cascade, all the children, based on the exclusive relation
members.

array Format (array objects, mime encode blobs=false)
Formats the current objects, for displaying to a human. objects is an
array containing the objects to format. If mime encode blobs is set to
true, all the encountered blobs will be encoded in base 64. The
function returns the objects array received as parameter.

GetParent (Connection, no blobs=false)
Returns the object’s parent (related via an exclusive relation), if any.
If the object has no parent, the function returns null.

NormalizeMultimedia ()
This is defined only for entities that have at least one multimedia or
picture field. This function will convert the multimedia or picture
members to the normalized values defined in Gyro interface.

16.3. HIGH LEVEL APIS 511

static array ISearch (Connection, var estimated, string what, start=0,
len=(entity page size), sort by=“”, descending=true, no blobs=false,
arc=false, UID=-1, GID=-1)
This function is defined only for entities using additional search
database. It performs a probabilistic search for the given query
(what). The estimated parameters is set to the estimated object
count matching what across the entire database. start is the offset of
the object and len the number of objects wanted. sort by is the
normalized member name to sort upon. If descending is set to true,
the sorting will be done from the highest relevance to the lowest. If
arc is set to true, the search will be done on the archive instead. UID
and GID may filter the results for objects owned by the given user or
group. This function returns an array of objects matching the given
search.

static number GetCount (Connection, string criteria[,arc=false],
extra fields=null, UID=-1, extra direct query=“”, extra where=“”[,
GID=-1])
Returns the number of objects in the database matching the given
criteria. The arc parameter is present only for entities having the
Archive flag set to Yes. The extra fields may be a vector describing
additional filters, having arrays as elements. For example, if the
entity has a member called “Value” and we want to look for objects
with a value between 2 an 10, we can use an filter like [[“value”,
”>=”, 2], [“value”, ”<=”, 10]]. For relation members, a filter must
have 5 elements, containing [“target entity name”,
“parent entity name”, “member name”, operand, array ids], where
operand is either “=” or “<>” and ids is an array containing all the
target object ids. This is a convenient way of filtering data,
abstracting the database layer (works for both SQL and NoSQL).
The extra direct query is reserved for adding JOIN statements and
should not be avoided, being SQL syntax dependent. In extra where
you could specify additional where conditions to be appended to the
internally generated query. Note that this works only for SQL
databases.

static array GetSmall (Connection, string criteria, start=0, len=(entity
page size), sort by=“”, descending=true[,arc=false],
extra fields=null, UID=-1, no blobs=true, extra direct query=“”,
extra where=“”[, GID=-1])

512CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Returns an array of objects matching the given criteria. start is the
offset of the object and len the number of objects wanted. See
explanation of GetCount for the other parameters.

string CompareTo (Entity otherobject)
Compares the current object with otherobject. If the objects are
identical, an empty string is returned. Otherwise, a string containing
all the different members names separated by new line is returned.

boolean DoValidate (Lang S, Connection, var error=null, Sender=null,
ignore fields array=null)
Returns true if the object validates all the restrictions imposed by
Gyro. S is a Lang object for translating the error messages. Sender
may be the form rendering the object, if any. If the object is invalid,
the error parameter will be set to a human-readable string describing
the validation error. ignore fields array may be a key-value array
containing all the normalized member names to be excepted from
validation, as keys, with true as values. For example [“Value”: true,
“Price”: true].

SetByMemberName (Connection, string membername, var newvalue)
Sets a member value by its normalized name, and returns the old
value.

AsText (short version=false)
Returns the human readable text representation of the object, to be
used in reports or lists. If short version is set to true, only the
representative member or Short preview expression is used.

Note that Gyro defines a lot more APIs than the previous list. However, I
do not recommend the use of undocumented API, because these are
usually subject to changes, and you may need to modify your code when
upgrading Gyro.

The relation members generate additional APIs. The naming convention
for relations is $NormalizedEntityName$NormalizedRelationMemberName.
For example, assuming that we have an entity named Client and another
one called Invoice, and Customer has a relation member called Issued
invoices defining an exclusive relation with Invoice, the API naming base
will be CustomerIssued invoices. We will refer this as NamingBase. When
referring the relation member, the target entity is the entity which the
member relates to. The parent entity is the one containing the member.

16.3. HIGH LEVEL APIS 513

Relation member generate the following additional APIs in the target
entity:

boolean LinkToNamingBase (Connection, obj id)
Links to current object to the given obj id object id. In our example,
this function will be defined by the Invoice entity, and named
LinkToCustomerIssued invoices. This function returns true if
succeeded, false if it fails. It will fail if the object referred by obj id is
not yet written in the database. Note that this function must never
be called before calling Write. A non exclusive relation may have
multiple links, by multiple calls to LinkToNamingBase, while
exclusive relations are limited to just one call, else data inconsistency
will result. The function itself will not check if the relation is
exclusive and target is already linked with another object, this being
up to the programmer.

Eg.:

[..]

var invoice = new Invoice();

invoice.Description = "Database analysis";

invoice.Quantity = 20;

invoice.Unit = "Hours";

invoice.Price_per_unit = 80;

invoice.Write(Connection);

// assuming that customer is an object of Customer

invoice.LinkToCustomerIssued_invoices(Connection, customer.ID);

[..]

boolean UnLinkToNamingBase (Connection, obj id)
This function removes the link between a relation member object
(obj id) and a target. It is the opposite of LinkToNamingBase.
Returns true if succeeded, false if it fails. Note that this function
simply breaks a link, without deleting any objects. The Delete
function will automatically break all object links before deleting the
object. If you want to delete an object, a call to this function may be
not necessary.

static array GetByNamingBase (Connection, obj id, sort field=“”,
descending=false, no blobs=false, start=0, len=(entity page size)[,
UID=-1], extra condition=“”[, GID=-1][, is revision=false])

514CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

This function returns an array of target objects linked to the give
obj id object id. Note that for relation restricted to just one object
(many to one, one to one), the len parameter will default to 1. The
UID parameter is present just for Owned targets. The GID
parameter is present just for Grouped targets and the is revision flag
will be present just for targets having the Enable versioning/reviews
property set to Yes. extra condition applies just to SQL databases,
and it holds a direct SQL condition to be appended to the generated
SELECT...WHERE statement. This should be avoided because is
database-engine dependent. In the given example, a list of all the
invoices for a specific customer could be obtained by using the
following code:

[..]

do {

// get invoices is blocks of up to 50

var invoices =

Invoice::GetByCustomerIssued_invoices(Connection,

customer.ID, "", false, false, start, 50);

var len = length invoices;

for (var i = 0; i < len; i++) {

var invoice = invoices[i];

if (invoice)

DoSomethingWith(invoice);

}

start += 50;

} while (invoices);

[..]

static number GetByNamingBaseCount (Connection, obj id[,
UID=-1], extra condition=“”[, GID=-1][, is revision=false])
Returns the number of target entities linked to the obj id object id.
The use of this function is encouraged just for reporting purposes.
When full data retrieval is needed, is better just to call
GetByNamingBase like in the previous example, until no more data
is available.

Alternatively, the same relation generates the following members in the
parent entity:

static array GetByRelatedMemberName (Connection, target id,

16.3. HIGH LEVEL APIS 515

sort field=“”, descending=false, start=0, len=(entity page size),
extra condition=“”)
Returns an array of parent objects linking to the target id target id.

Assuming that each invoice has a non-exclusive link with an entity
called Product, via a relation member also called Product, we could
retrieve all invoices containing a given product by using the following
code:

[..]

do {

// get invoices is blocks of up to 50

var invoices = Invoice::GetByProduct(Connection,

product.ID, "", false, start, 50);

var len = length invoices;

for (var i = 0; i < len; i++) {

var invoice = invoices[i];

if (invoice)

DoSomethingWith(invoice);

}

start += 50;

} while (invoices);

[..]

static number GetByRelatedMemberNameCount (Connection,
target id, extra condition=“”)
Returns the number of objects linked with the given target id target
id. The use of this function is encouraged just for reporting purposes.

This parent-oriented methods should be rarely needed, and usually, just
for non-exclusive relations.

A file called Utils.con contains various APIs for direct database queries or
time and string conversions. The most used functions are:

class Utils {

// executes the query on the database Connection. Returns true

if suceeded

static boolean DirectNonQuery(Connection, string query,

throw_err=true);

// executes the query on the database Connection,

// returning either the field called result, or the first

// field in the first row returned by the query.

516CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

static string DirectQuery(Connection, string query,

throw_err=true, string result_default="-");

// limits a UTF8 string to a maximum of max_len characters.

// If the string is cut, the after string si appended.

static string Limit(string utf8string, max_len=50, after="..");

// same as Limit, but at byte-level (ignoring UTF-8 characters)

static string ByteLimit(string s, max_len=50, after="..");

// returns the current date as a string

static string DateNow();

// converts t to its string representation (YYYY-MM-DD).

// If has_time is set to true, the returned string will also

// contain the time

static string ToDate(number t, has_time=false);

// extracts year, month and day from t (as returned by time()).

// If t is 0, the current date will be used

static GetDate(var year, var month, var day, number t=0);

// validates a date string, and returns true

// if the date is valid

static boolean ValidateDate(var string date,

date_null_val="0001-01-01");

// validates a date and time string, and returns

// true if the date is valid

static boolean ValidateDateTime(var string date,

date_null_val="0001-01-01 00:00:00");

// escapes a string, escaping all the XML special characters

static string XMLSafe(string utf8string);

// copies a filed from srcfilename to dstfilename

static boolean CopyFile(string srcfilename, string dstfilename);

// fid may be a string or a File object. It will be written

// to filename_and_path, creating directories if needed

// Returns true if succeeded.

static boolean SafePathWrite(fid, string filename_and_path);

// creates a directory, and subdirectories recursively,

// if needed

static boolean DoDirectory(string path);

// parses a string to a date. If as_array is true

// the result will be an array, as returned by

// localtime. If is false, it will return

// the date as time since epoch (as returned by time())

static number/array StrToTime(string date, as_array=false);

}

For a complete list, check the generated Utils.con file, found in the include
directory of the gyro generated application.

16.3. HIGH LEVEL APIS 517

The previous APIs don’t validate the user access rights, this being entirely
up to the programmer. The used objects are the one used internally by the
Gyro application. However, in some cases, a higher level of API is needed.
When setting Generate high level APIs to Yes, the GyroGrease APIs will
be generated. The GyroGrease.con file must be included in order to have
access to the GyroGrease APIs.

GyroGrease implements the following static functions:

*Connection GyroGrease::Connect ()
Connects to the database using the settings in the application .ini file
and returns the connection handle

GyroGrease::Begin ()
Initializes a transaction

GyroGrease::Savepoint (string savepointname)
Creates a save point with the give name

GyroGrease::Rollback (string savepointname=“”)
Rolls back all the database writes since a successful call to
GyroGrese::Begin(), ending the current transaction if savepoint is
empty. If a savepointname is provided, the data will be restored as it
was the save point was created, without ending the current
transaction.

GyroGrease::Commit ()
Commits the current transaction to the database, ending the
transaction.

The most important function defined by GyroGrease is actually a macro
called Grease(object). This function will return a new GyroGrease-aware
object with overloaded members for easy access. A call to an already
greased object, will return the same object. Note that GyroGrease
performs checks for user rights for given operations at API level.

The GyroGrease object will have the following members:

Parent : read-only property (object)
Gets the object’s parent

518CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Lock ()
Locks the current object for writes from another connection. The
lock will be released when the current transaction ends.

Delete ()
Deletes the object

Archive ()
Archives the object (if the object is archivable and the logged user
has the rights)

Write ()
Writes the object to the database, if the logged user has rights for
this operation.

static array Array (start=0, len=-1)
Returns a list containing the objects in the database, starting from
start and containing up to len elements. If len is -1, all the elements
will be retrieved.

For each relation member in the object, GyroGrease will create a special
property class object, for managing access to the related objects. The
member object will be accessed simply by its normalized name, and will
have the following members:

Sort : string property
Sets the sorting member name

Descending : boolean property
If set to true, the sorting will be done in descending order

BlobMode : boolean property
When is set to true, the returned object or objects will not contain
large fields (for example, files or pictures) and will be limited to the
short preview length.

Count : number read-only property
Gets the related objects count

array Array (start=0, len=-1)
Returns the related objects as an array.

16.3. HIGH LEVEL APIS 519

operator [](index or key)
Returns the related object on the given index, if index or key is a
number. If index or key is a string, and the related entity has a quick
search member that is unique, it will return the object identified by
the given key (the quick search member value equal with the given
key). If no unique quick search member is set, and index or key is a
string, an exception will be thrown.

operator =(object)
This is defined only for relations limited to one object (many to one
and one to one). Will link the given object with the current relation
(unlinking a previous linked object if needed). If object is null, the
previous object (if any) will be unlinked.

Add (object)
This is defined only for relations not limited to one to a single object.
Will link the given object with the current relation.

Remove (object)
This is defined only for relations not limited to one to a single object.
Will unlink the given object from the current relation.

Note that the GyroGrease object will always inherit all the GyroGears
APIs (except the overwritten ones, for example Write).

Assuming that the structure in figure 16.2 is defined, the following code
could be used (note that BlogExample.con must be placed in the Blog
application root):

BlogExmaple.con

1 include include/GyroGrease.con

2

3 class Main {

4 Main() {

5 try {

6 var connection = GyroGrease::DoConnect();

7 GyroGrease::Begin();

8 // you could combine GyroGrease with

9 // GyroGears APIs

10 // var post=Grease(Post::FindById(connection, 2));

11 // will look for the post with 2 as an id

12 post = Grease(new Post());

520CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Figure 16.2: A simple blog model

16.3. HIGH LEVEL APIS 521

13 post.Title = "test";

14 post.Content = "Hello world!";

15 post.Write();

16

17 // no other modify operation is allowed

18 post.Lock();

19

20 GyroGrease::Savepoint("there");

21

22 var comment = Grease(new Comment());

23 comment.From = "GyroGrease";

24 comment.Text = "Hello world";

25 comment.Write();

26

27 // cancel the comment write

28 GyroGrease::Rollback("there");

29

30 comment = Grease(new Comment());

31 comment.From = "GyroGrease again";

32 comment.Text = "Hello world !!";

33 comment.Write();

34

35 post.Comments.Add(comment);

36

37 var len = post.Comments.Count;

38 echo "Comment count:" + len + "\n";

39 for (var i=0; i<len; i++) {

40 comment=post.Comments[i];

41 echo "From: " + comment.From + "\n";

42 echo "Comment: " + comment.Text + "\n";

43 echo comment.Parent.Comments[0].Text;

44 post.Comments.Remove(comment);

45 }

46 // send the post to archive

47 post.Archive();

48 GyroGrease::Commit();

49 } catch (var exc) {

50 echo exc;

51 }

52 if (Connection)

53 Connection.Close();

54 }

55 }

522CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Note that transactions are not supported for NoSQL database servers like
MongoDB. The Begin, Savepoint, Rollback and Commit have no effect on
these engines.

16.4 High-level data types

GyroGears applications are using several high level data types. Each entity
member must be of one of those types.

As described before, all members, regardless of their type, have some
common properties.

A quick recap of the member properties:
Property Description
Name The member’s name
Public name An alternate name to be shown to the user
Category The category containing the member
Default value A default value/initial value of the member
Validation A validation PERL-compatible regular expression
Init function A function to be called when the object is initialized.

It may be a concept function, or a direct SQL query,
if prefixed with “sql:”, for example:
sql: select max(val)+1 from sometable

Attached formula A concept expression or an SQL query (prefixed by
“sql:”), This expression can refer existing members,
for example, you can perform an addition between a
member called Price and Tax by using: Price + Tax

And the member flags:

Flag Description
Mandatory The member value is mandatory
Unique Force the member value to be unique

across the database
Enforce user link If unique flag is set and the entity is

owned, the unique check will be done only
for objects belonging to the current logged
user

16.4. HIGH-LEVEL DATA TYPES 523

Advanced search Generate advanced search filters in Gyro
application UI

Read only Makes the member value read-only
Trim Automatically trims additional

spaces/tabs/new lines from the member
value

Editable in views Makes the member editable in views,
without the user opening a form

Triggers update on focuse out Recompute all attached formulas for all
members in the entity when the member
is not edited anymore

Hide in views Hide the member in views
Hide in forms Hide the member field in data forms
Hide title in forms Hide the member title in data forms
Visible in PDF Shows the member in automatically gen-

erated printed forms
Visible in report Shows the member in quick reports (auto-

matically generated reports)
Pattern search Search members by fragments of their con-

tent instead of exact match
Indexable If the entity has an additional index

database, this member will be indexed
Reload original unique data When the unique check fails, the entity

having the same value is automatically
loaded into the form

16.4.1 Short string

Short string are used for storing strings up to 255 characters. It has the
following specific properties:

has suggested values
Generates suggestions in the data field, when the user types a value.
Suggestions are based on previously entered values.

Short preview length
Sets the maximum number of UTF8 characters to be shown in views
and reports.

524CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Modifier function
Sets a normalization function. The function template is:

string ModifierFunction(string parameter);

By default, Gyro provides 6 modifiers: ToUpper, ToLower,
UTF8ToUpper, UTF8ToLower, Utils::SentenceCase and
Utils::NameCase.

16.4.2 Long string

Long string are used for storing strings with unlimited5 number of
characters.

It has the following specific properties:

Render as plain text
Render the long string as plain text

Render as WYSIWYG
Render as WYSIWYG6. The string is stored as HTML + CSS and a
rich editor is provided to the user, allowing formating of the text.

Render as a sheet
Render the long string as spread sheet. This is supported only by
concept:// applications running on PCs, and is better to be avoided
due to limited support.

Short preview length
Sets the maximum number of UTF8 characters to be shown in views
and reports.

Modifier function
Sets a normalization function. Similar to short strings, Gyro provides
6 modifiers: ToUpper, ToLower, UTF8ToUpper, UTF8ToLower,
Utils::SentenceCase and Utils::NameCase.

Images source path

5Limited only by database server capabilities, usually 231characters
6What You See Is What You Get

16.4. HIGH-LEVEL DATA TYPES 525

When in WYSIWYG mode, set the path to a relation with an entity
with a image member, to be used as source for pictures. See the
Relation data type for more information about paths.

16.4.3 Secret field

Secret field are used for storing strings up to 255 characters. Unlike short
strings, the character will be masked (not visible to the user). This is great
for storing passwords. If the Requires confirmation property is set, the
user will be presented with two masked fields, in order to confirm the input.

16.4.4 Integer

This data type can hold signed integer values. Depending on the database
server used, it can range from 232 to 253 without loosing precision.

16.4.5 Decimal

This data type can hold signed decimal values. Depending on the database
server used, it can have values up to 1.8x10308 (the limit of the Concept
number).

It has the following specific properties:

Decimals
The number of decimals

Render as chart bar
In views, instead of printing the actual value, a progress bar will be
used (for values [0.00 .. 100.00]).

Show sum in reports
In reports and master views, when at least one filter is used or a
search is performed, it will compute the sum for the given elements.

526CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

16.4.6 Date/time

Date/time holds a date (with or without time), as a string, in the form
YYYY-MM-DD or YYYY-MM-DD HH:mm:ss, if time is needed. The null
date is “0000-00-00” or “0001-01-01”.

The Default date property can be set to today, for today’s date, or any
of the preset values (for example tomorrow or a year ago). It can also hold
static date values, for example 2014-02-15 for February 2nd, 2014.

If the Attach time is set, the member will also hold a time value, appended
to the date value.

16.4.7 File

A file member will hold a file of any given size7. The user will be able to
attach a file to the data form.

It has the following specific properties:

Download the file when clicked
When the user will click on the file name on the data form, the file
will be downloaded

Open the file when clicked
When the user will click on the file name on the data form, the file
will be downloaded and the opened by the client with the default file
handler (if trusted).

Store on disk instead of the database
When set, Gyro will keep the file on the disk instead of using BLOB
fields in the database. This is a convenient way of optimizing the
database size. Is recommended to set this property, especially when
dealing with large files.

7Restricted only by the database server or file system

16.4. HIGH-LEVEL DATA TYPES 527

16.4.8 Boolean

A number value that can be either true or false. This will be rendered as
a check box. As a note, avoid setting the Unique flag, because the user will
be able to insert just two records in the database (one with a value of true
and another one as false). Also, setting the Mandatory flag, will force the
user to set the member to true. The Default value property must be set to
1, if for true or 0 for false (if not set, 0 is assumed).

16.4.9 Choose radio

This will present a list of options to the user, rendered as radio buttons.

Values
The values, separated by comma. For example: One, Two, Three

Allow multi-select when searching
When using advanced filters (Advanced search is set), the user will be
able to search for multiple values at once (for example, searching
simultaneously for “One” and “Two”).

Note that Default value must be set to a value contained by the Values
list, for example, One.

16.4.10 Choose combo

This will present a list of options to the user, rendered as combo box.

Values
The values, separated by comma. For example: One, Two, Three

Allow multi-select when searching
When using advanced filters (Advanced search is set), the user will be
able to search for multiple values at once (for example, searching
simultaneously for “One” and “Two”).

Similar to choose radio, Default value must be set to a value contained by
the Values list, for example, One.

528CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

16.4.11 Picture

A picture member will hold a normalized image. The user will be able to
attach a image to the data form, by using a local picture file, a camera for
capture or a copy/paste operation.

It has the following specific properties:

Resize
If set, resizes the original image to the given size (width x height)

Thumb size
Sets the thumbnail image size to be used in views

Preview size
Sets the preview image size to be used in forms

Format
The image normalization format (JPEG or PNG)

Allow webcam capture
Allows the user to capture an image from the camera

Autocrop thumbnail
Crops the thumbnail, in order to have the exact thumb size. If not
set, the picture will be shrunk to fit a rectangle defined by the thumb
size, maintaining the aspect ratio.

Autocrop preview
Crops the preview, in order to have the exact preview size. If not set,
the picture will be shrunk to fit a rectangle defined by the preview
size, maintaining the aspect ratio.

Autocrop original image
Crops the image, in order to have the exact given size. If not set, the
picture will be shrunk to fit a rectangle defined by the resize
property, maintaining the aspect ratio.

16.4.12 Multimedia

A picture member will hold a normalized video. The user will be able to
attach a multimedia file to the data form, by using a local file.

16.4. HIGH-LEVEL DATA TYPES 529

It has the following specific properties:

Normalization video size
Sets the normalization video size. Any video file uploaded by the
user will be converted to this size.

Thumbnail size
Sets the thumbnail frame size.

Preview size
Sets the video preview frame size.

Maintain aspect ratio
If set, it will maintain the aspect ratio of the given video

File format
Sets the thumbnail and preview image format (JPEG or PNG)

Compare at most (thumbs)
Sets the number of frames to be extracted and compared. The
application will automatically choose the frame containing the most
colors, to avoid identify black frames. Also, the system uses some
random coefficients, in order to avoid for the user to hack the video,
forcing a specific frame.

Normalized video format
Sets the video format to be used internaly (avi, flv, ts, mpeg, h264).

Video bitrate
Sets the video bitrate in bits

Audio samplerate
Sets the audio sample rate in hz

Autocrop thumbnail
If set, the thumbnail will be automatically cropped to have the given
size.

Store on disk instead of the database
When set, Gyro will keep the media file on the disk instead of using
BLOB fields in the database. This is a convenient way of optimizing
the database size. Is recommended to set this property, especially
when dealing with large media files.

530CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Note that for every multimedia member, Gyro will generate a special loop
script, called ConversionService $EntityName $MemberName.con located
in the application root. This script must be set up as a Concept service or
simply run from the console for processing the videos.

16.4.13 Custom function

A custom function that the user may call by pressing a button.

It has the following specific properties:

Function
The function to be called (without the parameters list). A valid
value will be: Misc::CustomFunction.

static CustomFunction(RForm Sender, object target);

Sender may be the entity form, parent object form or main form
(MainForm or MobileMainForm). You can access the database
connection by reading Sender.GetDBLink() and the localization
object (Lang class) by reading Sender.GetLanguage(). target is the
calling object. The returning value of this function is ignored.

Called by pressing a button
If not set, the function will be automatically called when the user
opens the entity form. If set, the user will be presented with a
button for calling the function.

View in context menu
If set, the user will be able to call the function by right-clicking the
object in views, and selecting the given member name.

Icon
Set an icon for the given action. It is recommended to use icons
between 16x16 to 32x32 pixels.

16.4. HIGH-LEVEL DATA TYPES 531

16.4.14 Direct query

Performs a direct SQL query and shows the result as a read-only text.
This is only supported for SQL databases, and is not recommended (it
exists only for compatibility with GyroGears 1.0). The use of Attached
formula is recommended instead.

The Formula property sets the SQL query to be used. The query must
return exactly one row containing one column, for example:

select max(value)+1 from table;

16.4.15 Relation

Relation members are member referencing other entities. There are two
kinds of relations.

In an exclusive relation, a child object can be linked just with one parent
object. This child object is created within the relation and cannot be
re-used in another exclusive relation.

Exclusive relations are:
Relation type Description
one to one Exclusive relation with exactly one other object
one to at least one Exclusive relation with more than one other object
one to any Exclusive relation with zero or more other object
one to custom Exclusive relation with a minimum and maximum of

objects

In a nonexclusive relation, a child object may exist independent of the
relation, and may be linked to multiple non-exclusive relations.

Nonexclusive relations are:
Relation type Description
many to one Nonexclusive relation with exactly one other object
many to at least one Nonexclusive relation with more than one other object
many to any Nonexclusive relation with zero or more other object
many to custom Nonexclusive relation with a minimum and maximum

of objects

532CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

It has the following specific properties:

Relation type
Set the type of the relation

Relation with
Set the child entity for the related member. This property is
mandatory.

Max items (custom relation)
When relation type is one to custom or many to custom, sets the
maximum number of child objects.

Min items (custom relation)
When relation type is one to custom or many to custom, sets the
minimum number of child objects.

Add by
For exclusive relations only, when the Relation with entity has at
least a relation member itself, can be set as an Add by member. This
will cause the user to create the new object, by creating or selecting
the entity object referred by the Relation with relation member.

For example, an entity Customer, has a relation with Invoice, and
Invoice has a relation with Product. If in the Customer/Invoices we
set Add By Product, when the user will add an Invoice, it will be
first prompted to select a product, prior creating the invoice. This is
called a triple relation.

Filters
For nonexclusive or triple relations, a filter path may be provided.
This is the equivalent of a SQL join.

A filter may have one or two components, separated by comma. A
single-component filter will refer a member of the current entity.
Assuming the following structures:

Customer: Offers(exclusive), Invoices(exclusive) Offer: Products
(non-exclusive) Invoice: Product (non-exclusive)

For Customer/Invoices we have the Add by property set to Product,
but we want to select only the products in the client offers. That can
be achieved by using the filter (on the Invoices relation):

16.4. HIGH-LEVEL DATA TYPES 533

Offers/Products

This will limit the user’s product option to the ones linked to the
client offers. Entities and members are separated by “/” in paths.
This will work both on SQL and NoSQL databases.

Additionally, for SQL databases, filters may be used. A filter is a
direct SQL condition enclosed by [], for example:

Offers[expired=0]/Products[price>10.00]

This will present the user only with products with a price bigger
than 10.00 and linked to non-expired offers.

Note that on single component filters, we only work with member
names, starting from the current parent entity.

Double component filters provide more complex filters, when the
relation involves a relation with an entity having a common parent
with the current entity. The first component will describe the path
to the target entity, while the second one will describe the relation
with the current entity.

In our example, the following filter could be set on Invoice, instead of
Customer, resulting in the same behavior.

/Client/Offers[expired=0]/Products[price>10.00],/Client/Invoices

Note that in this case, the first element of each filter is an entity
instead of a member. It this case, the entity name is preceded by a
“/”.

Shortcut key
Sets a short cut key for the relation. Modifiers like <alt> may be
used, for example F3 or <alt>F3. Note that F1 and <alt>F1 are
reserved for help access.

Reorderable
Allows the user to reorder the objects in the relation by drag and
drop operations

Accept multiple selection

534CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

For nonexclusive relations, allow the user to select multiple items at
once, by holding the Ctrl key while selecting using the mouse, or by
using the Shift key and arrow keys.

Duplicable
When the user selects Duplicate, if the relation is exclusive, it will
duplicate by cloning all the child objects of this member. For
nonexclusive relations, it will only duplicate the objects links.

Note that for nonexclusive relation, if the Unique flag is set, the user will
be able to link an object just once to the current relation. If not set, for
many to many relation, the user will be able to add the same entity
multiple times.

For nonexclusive relations, with a relatively small object base, you may set
the Use a combo box and/or Use editable box, causing the relation to
be rendered as a simple RComboBox (or REditComboBox).

16.4.16 Reference

References are virtual read-only relations, referring already existing
relation. For example, Customer has Orders, linking to Product. If we
want to see all the products ordered by a specific customers, on every
order, a reference may be defined for customer, referring Orders/Products.
This will generate a view, containing all the products from all the orders
being made by the customer. It has the following specific properties:

Relation
The relation member withing the current entity to reference

Member
The member withing the relation to reference (may be of any type)

Path
Alternative version of Relation/Member properties. A path may be
set in the similar syntax with the relation filters (see previous
subsection). Unlink Relation/Member the Path property must
reference only other relations.

16.4. HIGH-LEVEL DATA TYPES 535

Note that the Relation/Member properties cannot be used when Path is
set.

16.4.17 Non homogeneous relation

A non homogeneous (or heterogeneous) relation can reference multiple
entities simultaneously. This data type is to be avoided, due to limitations
for reporting and data importing/exporting.

Reorderable
Allows the user to reorder the objects in the relation

Minimum items
Sets the minimum object count for the relation

Maximum items
Sets the maximum object count for the relation. If set to 0, it will be
unlimited.

Mixed list level
Sets the minimum user level allowed to list the objects in the relation.

Enable send to option
Enable the “Send to” (for nonexclusive relations) or “New for” (for
exclusive relations), in the related entity master view, enabling the
user to add items th the current object without opening it first.

For each entity, in the mixed relation, the following properties may be set:

Relation with
Set the child entity. This property is mandatory.

Relation type
Set the type of the relation: one-relation for exclusive relation and
many-relation for non-exclusive relations.

Minimum elements
Sets the minimum object count for the related entity

Maximum elements
Sets the maximum object count for the related entity. If set to 0, it
will be unlimited.

536CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

16.5 Plug-ins

A special Gyro member type is the plug-in. A plug-in is created just like
any other member, but it does not hold any actual data. Instead, it is
rendered in an user data form. By default, Gyro has the following plug-ins:

EmailSender
Adds a send by e-mail button to a form

GoogleMaps
Shows a Google map, centered on a point described by a string
member

GyroLineChart
Generates a line chart for a given relation member

WaterMark
Adds an water mark to an existing image member

WebBrowser
Navigates to an address specified by a string member

It is relatively easy to write your own plug-in. All plug-ins are located in
the plugins directory, located in the GyroGers folder. Each plug-in must
have a png icon (32x32 pixels), a parameter definition file, and a root
directory, containing all the sources and resources needed.

For example, for a plug-in called MyPlugin, the following elements should
be created: MyPlugin.png, MyPlugin.parameters, MyPlugin/include and
MyPlugin/res folders.

The MyPlugin.parameters contains a line for each parameter in the
following format:

Property name:mandatory|optional,

string|boolean|number|entity|member| memberedit|option,value

As an example, consider the EmailSender plug-in, with the parameter
definition:

16.5. PLUG-INS 537

1 Servername:mandatory,string,localhost

2 Port:mandatory,number,25

3 Username:optional,string

4 Password:optional,string

5 From:mandatory,memberedit

6 Email template:mandatory,longstring,"Hello world !!!"

7 Use members (separated by comma):optional,memberedit

8 To member:mandatory,memberedit

9 Subject member:mandatory,memberedit

10 Button caption:optional,string," by e-mail"

11 TLS:optional,boolean,false

12 TLS Trust file:optional,string,""

13 Authentification method:optional,option,

off;on;plain;login;cram-md5;external;gssapi;scram-sha-1;digest-md5;ntlm

14 Send on write:optional,boolean,false

15 Add headers:optional,boolean,true

As a special case, the optional property type, has a list of all the possible
values separated by “;” (see line 13). Also the memberedit type, allows the
user to either select a member, or to type free text. The plug-in can then
check if the member exists by using the HasMember function and see if it
is a valid member name or some free text.

Each plug-in must defined a class, with the plug-in name, in the include
directory. The class must implement the following methods:

static Query (string operation, target, prev object, member1=”” ...)
This method is automatically called by Gyro at various operations,
described by operation. Values for operation may be: “write”, called
when an entity object is written into the database, “oninsert”, called
when an object if first written into the database, “onupdate”, called
when an object gets updated into the database, “delete”, called when
deleted and “archive” called when the object is archived/unarchived.

static Create (PlugInDataContainer Context, ContainerObject,
OwnerForm, member1=””)
Called when the data form is created. The Context object describes
the method events hooks for the plug-in (see bellow). The
ContainerObject is a Concept container UI object holding the plug-in
(it may be, for example an RScrolledWindow), and the OwnerForm
is the form rendering the plug-in. This function must return an

538CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

plug-in instance (new MyPlugin()). member1..N parameters are
string parameters, it the exact order of the plugin parameters file,
containing the values selected by the programmer, as strings. Note
that a boolean value will be set as the string “true” or “false”.

The PlugInDataContainer class may have the following properties:

Set (Obj)
Called when an entity object (Obj) is loaded into a data form. It
allows the plug-in to configure itself for the loaded object.

Get (Obj)
Called when an entity object is read from the form (for example
when is saved). It gives the plug-in a chance to make modifications
to that object.

boolean Validate (Obj, var error string)
It is called every time an object entity is validated. A plug-in may
have its own validations, if needed. If the given entity object (Obj) is
valid, this function must return true. If it is invalid, must return false
and set the error string parameter to a human-readable string
describing the error.

UpdateFormula (Obj)
Called when an entity object (Obj) needs recomputing of all the
attached formulas.

For simplicity, the WebBrowser plug-in will be analyzed next. It has just
two properties, defined in WebBrowser.properties.

1 URI member:mandatory,member

2 No URI callback:optional,boolean,true

And uses the following code:

WebBrowser/include/WebBrowser.con

1 include RWebView.con

2

3 class WebBrowser {

4 private var WebView;

16.5. PLUG-INS 539

5 private var URIMember;

6 private var NoURICallback;

7

8 public WebBrowser(Owner) {

9 WebView=new RWebView(Owner);

10 WebView.Show();

11 }

12

13 public Set(Obj) {

14 // set !

15 if (!URIMember)

16 throw "WebBrowser plug-in error: no URI member set";

17

18 var temp="";

19 if (!GetMember(Obj, URIMember, temp))

20 throw "WebBrowser plug-in error: no such member

’${URIMember}’";

21

22 temp=""+temp;

23

24 if (!Pos(ToLower(temp), "http://"))

25 temp="http://"+temp;

26

27 WebView.Stop();

28 WebView.URI=temp;

29

30 return this;

31 }

32

33 public Get(Obj) {

34 if (NoURICallback)

35 return;

36

37 if (!URIMember)

38 throw "WebBrowser plug-in error: no URI member set";

39

40 var uri=WebView.URI;

41 if (uri) {

42 if (!SetMember(Obj, URIMember, uri))

43 throw "WebBrowser plug-in error: no such member

’${URIMember}’";

44 }

45

46 return this;

47 }

540CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

48

49 public Validate(Obj, var error_string) {

50 error_string="";

51 return true;

52 }

53

54 static Query(string operation, target, prev_object,

URIMember="", NoURICallback="true") {

55 // nothing

56 }

57

58 static Create(Context, ContainerObject, OwnerForm,

URIMember="", NoURICallback="true") {

59 var handler=new WebBrowser(ContainerObject);

60 handler.URIMember=URIMember;

61 if (NoURICallback=="true")

62 handler.NoURICallback=true;

63 else

64 handler.NoURICallback=false;

65

66 Context.Set=handler.Set;

67 Context.Get=handler.Get;

68 Context.Validate=handler.Validate;

69 return handler;

70 }

71 }

Note how the URIMember and NoURICallback parameters are given as
strings.

Note that not all the features of the plug-ins are available on http:// and
mobile applications, and may not be available on all platforms.

16.6 Conditional data

Each entity may have conditional data attached, defining what fields
and/or categories are visible or not. The conditions are defined in XML,
using a few simple tags.

The root object is called <condition> and it must have an object
attribute, defining the object name. Each <condition> may have one ore

16.6. CONDITIONAL DATA 541

more <trigger> nodes encapsulating a conditions. Each must be linked to
an entity member, by setting the property attribute. The property will be
set to the name of the member (natural or normalized), whose value must
be monitored for changes.

Each <trigger> must contain one or more conditions. There are two types
of conditions: <if syntax=“...” /> and <case syntax=“..”> .. </case>.
The syntax attribute will contain a Concept condition that activates the
trigger.

An activate trigger may either <inactivate> or <hide> a field(member) or
a category.

Assuming an entity called Customer, having Type (Company, Person,
Freelancer), Satisfaction level (Low, Medium, Hight) among usual members
like VAT Number, Representative and so on, a conditional form will use:

1 <condition object="MyCustomer">

2 <trigger property="Type">

3 <if syntax="MyCustomer.Type==’Person’" />

4 <!-- We could use multiple if tags -->

5 <if syntax="MyCustomer.Type==’Freelancer’" />

6 <hide category="Contacts" />

7 <hide field="Representative" />

8 <hide field="VAT number" />

9 <!-- Inactivate the account field-->

10 <inactivate field="Client account" />

11 </trigger>

12 <trigger property="Satisfaction level">

13 <case syntax="MyCustomer.Satisfaction_level==’Low’">

14 <hide field="Want newsletter" />

15 <hide field="Want offers" />

16 <hide category="Contacts" />

17 </case>

18 <case syntax="MyCustomer.Satisfaction_level==’High’">

19 <hide field="Improvement suggestions" />

20 </case>

21 </trigger>

22 </condition>

This will cause the VAT number, Representative and all the members in
the Contacts category to be hidden. The Client account member will still
be visible, but rendered read-only for the user.

542CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

The Satisfaction level trigger will use mutual excluding conditions, for
“Low” and “High”, hiding fields accordingly.

16.7 Custom actions

Application custom actions are functions run by the end-user by pressing a
button in the tool bar or menu bar. Each Action must reference a trigger
function having the following prototype:

static boolean MyAction(Sender, ProgressForm, parameter = null);

The trigger function set to the function name, without parameters, for
example Misc::MyAction. An action may have optional parameters,
defined as a key-value array, or as a key-value array-returning function
(including parameters), for example Misc::GetSubActions(Connection). An
example array would be [“Sub action 1” => 1, “Sub action 2” => 2].
This will create an pop-up menu associated with the action, allowing the
user to select one of the sub-action.

parameter is set only when the user selects a sub-action, and will have the
value of the selected element from the action parameters array.

An action will have a status window with one or two progress bars (a
primary and a secondary). The status history and progress are controlled
via the ProgressForm parameter. If the function returns false, the progress
form will be closed automatically. If it returns true, the user will have to
close the window, allowing the read of all the status history (for example,
errors).

The CustomProgressForm class has the following members:

Info (string message)
Adds an info message to the status history (prefixed by an info icon)

Warning (string message)
Adds a warning message to the status history (prefixed by a warning
icon)

Error (string message)

16.7. CUSTOM ACTIONS 543

Adds an error message to the status history (prefixed by an error
icon)

Success (string message)
Adds an operation successfully message to the status history

Clear (string message)
Clears all the status history

Progress (number fraction, string progress caption)
Sets the primary progress bar value in the interval [0.00 .. 1.00], and
sets the progress bar caption to given progress caption.

Progress2 (number fraction, string progress caption)
Sets the secondary progress bar value in the interval [0.00 .. 1.00],
and sets the secondary progress bar caption to given progress caption.

include/Misc.con

1 class Misc {

2 static MyAction(Sender, ProgressForm, parameter = null) {

3 // for localized messaging

4 // var S = Sender.GetLang();

5 // The database connection

6 // var Connection = Sender.GetConnection();

7

8 for (var i = 0; i < 100; i++) {

9 ProgressForm.Progress((i + 1) / 100, "Now at ${i + 1}%");

10 for (var j = 0; j < 100; j++) {

11 ProgressForm.Progress2((j + 1) / 100, "Step ${i+1} at

${j + 1}%");

12 }

13 if (i==50)

14 ProgressForm.Warning("Warning: half");

15 if (i==70)

16 ProgressForm.Error("Error, i is 70");

17 }

18 ProgressForm.Success("You can now close this window");

19 ProgressForm.Info("You can now close this window");

20 // the localized version

21 // ProgressForm.Info(S << "You can now close this window");

22 return true;

23 }

24 }

544CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Figure 16.3: Action status

This will result in a for shown to the user similar with the one in 16.3.

Custom action are useful when importing bulk data (for example from .zip
files), processing or analyzing big datasets, or just a long-lasting operation.

For very long lasting operations, it is recommended to check for any
messages pending in the application. The previous example should be
rewritten as:

1 class Misc {

2 static MyAction(Sender, ProgressForm, parameter = null) {

3 for (var i = 0; i < 100; i++) {

4 ProgressForm.Progress((i + 1) / 100, "Now at ${i + 1}%");

5 for (var j = 0; j < 100; j++) {

6 ProgressForm.Progress2((j + 1) / 100, "Step ${i+1} at

${j + 1}%");

7 }

8 if (i==50)

9 ProgressForm.Warning("Warning: half");

10 if (i==70)

11 ProgressForm.Error("Error, i is 70");

12

13 while (CApplication::MessagePending()) {

14 if (CApplication::Iterate(Sender) ==

MSG_APPLICATION_QUIT) {

15 ProgressForm.Info("Operation interrupted by user

...");

16 return false;

17 }

18 }

19

16.8. ADVANCED REPORTS 545

20 }

21 ProgressForm.Success("You can now close this window");

22 ProgressForm.Info("You can now close this window");

23 return true;

24 }

25 }

This will iterate the main queue, while processing the action function.
Note that on disconnect, the CApplication::Iterate function will return
MSG APPLICATION QUIT.

16.8 Advanced reports

GyroGears automatically generates some reports/exports based on the
application specification. However, in some cases, special reports may be
needed. For this, a GyroGears application may have advanced reports,
explicitly defined by the developer. These reports are defined as XML,
using a few tags. The XML root node is <report>. Each report has
three sections:

<parameters>
Defines the report parameters (entered by the end-user)

<datasource>
Defines the data source (direct SQL query or Concept function)

<body>
Defines the layout of the report using tags similar to XHTML.

The report structure is:

<report>

<parameter name="Parameter public name" type="string | number |

boolean | date | datetime | combo | text | relation" with=""

values="" default="" as="ParameterName"/>

<datasource>

<data query="select ... where name like ?" result="report1">

<param>ParameterName</param>

</data>

546CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

</datasource>

<body>

.. report body ...

</body>

</report>

All of the three sections are mandatory. The parameter tag will specify the
parameters requested from the end-user. Each parameter must have at
least the name, type and as attributes set. The name attribute is the
parameter name as shown to the user, while the as attribute is the internal
parameter name (as used by the developer). You should regard name as a
caption. type specified the parameter type, and should be set to one of the
values in the next table.

The Gyro report parameters may be:
Type attribute Attributes Notes

string default The user will be asked to enter a string

text default The user will be asked to enter a long
string

number default The user will be asked to enter a num-
ber

boolean default The user will be asked to check-
/uncheck

date default The user will be asked to enter a date

datetime default The user will be asked to enter a date
and a time

combo values, default The user will be asked to select from a
combo box

relation with The user will be asked to select an en-
tity object

The default attribute specifies a default value for the given parameter. For
combo parameters, the values attribute keeps the list of values, separated
by comma. For relation parameters with specifies the name of the target
entity. All of the parameters will be returned as strings except for the
relation parameters, returning an array containing the selected entity
objects.

Assuming that an entity named Category is defined, the following
parameters may be defined:

16.8. ADVANCED REPORTS 547

<report>

<parameter name="Name" type="string" default="enter a name"

as="Name" />

<parameter name="Height (cm)" type="number" default="182"

as="Height" />

<parameter name="Sex" type="combo" default="M" values="M,F"

as="Sex" />

<parameter name="Archived" type="boolean" default="0"

as="Archived" />

<parameter name="Start date" type="date" default=""

as="Start_date" />

<parameter name="Student category" type="relation"

with="Category" as="Category" />

<parameter name="Notes" type="text" default="" as="Notes" />

[..]

</report>

Resulting in the input form shown in figure 16.4.

Figure 16.4: Report parameters

The most important part of a report is the <datasource>. A data
source may contain one ore more <data> queries, functions or query files.

548CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

The data node must specify one of the following attributes
query A SQL query returning the data used in the report

query file Identical with query, but instead of directly specifying the
query, a text file containing the query is used

function A Concept function providing the data. The function must
be given as delegate (without any parameters).

The data function prototype is:

static GetReportSource(Connection, array parameters);

Where Connection is the Gyro Application connection handle and
parameters is an array of parameters specified by the <param> tag.

All <data> tags must have the result attribute set to an unique
identifier. For example:

<report>

<parameter name="Start date" type="date" default=""

as="Start_date" />

<parameter name="End date" type="date" default="" as="End_date"

/>

<datasource>

<data query="SELECT * FROM student WHERE Date >= ? AND Date

<= ?" result="report1">

<param>Start_date</param>

<param>End_date</param>

</data>

</datasource>

[..]

</report>

The same source may be defined using the a data function:

<report>

<parameter name="Start date" type="date" default=""

as="Start_date" />

<parameter name="End date" type="date" default="" as="End_date"

/>

<datasource>

<data function="Misc::GetReportData" result="report1">

16.8. ADVANCED REPORTS 549

<param>Start_date</param>

<param>End_date</param>

</data>

</datasource>

[..]

</report>

The corresponding data function:

class Misc {

static GetReportData(Connection, parameters) {

var data_start=parameters[0];

var data_end=parameters[1];

var[] result;

// acquire data and return it as a matrix

// containing one key-value array per row

// for example:

result = [

["column1" => "Value 1", "column2" => "Value 2"],

["column1" => "Value 1", "column2" => "Value 2"]

];

// will return two rows, with two columns

// (column1 and column2)

return result;

}

}

The last step in creating a report is the <body> definition. This defines
the actual layout of the report.

The accepted body sub-tags are:

<p align=“left|right|center|fill” margin=“”>
Creates a text paragraph. The align attribute specify the text align
inside the paragraph. justify is an alias of align, having the same
effect. The margin attribute specifies the text margin in points,
percentage, cm or inches. For example:

<p align="10pt">This is a text paragraph</p>

550CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Makes the text bold, for example:

This text is bold

<i>
Makes the text italic, for example:

<i>This text is italic</i>

<u>
Underlines the text, for example:

<u>This text is underlined</u>

<title align=“left|right|center|fill” margin=“”>
Shows the text as the report tile, for example (in relatively bigger
letters):

<title>This is the report tile</title>

Makes the text bigger and bold, for example:

This is is important

Shows text using the given font family, color, background color and
size. Color must be in RGB hex format, prefixed by #.

This text is

red

Creates a hypertext link in the report.

Visit Devronium homepage

Inserts a line break.

16.8. ADVANCED REPORTS 551

<p>This is a line
And this is another line</p>

Insert an image into the document, specified by url.

<hr width=“” height=“” align=“left|right|center”/>
Inserts a horizontal ruler. width and height may be in points or
percentage. For example, a horizontal line aligned at right, with a
width of 80% of its parent width, and a height of 2 points, cand be
defined:

<hr width="80%" height="2pt" align="right"/>

<table width=“” height=“” border=“” cellspacing=“” cellpadding=“”>

Inserts a table. A table may have only tr and thead nodes as
children. The border property must be in XSL-FO border format, for
example border=“2pt solid red” will create a red border line 2 points
thick.

<tr bgcolor=“”>
Inserts a row in a table.

<thead bgcolor=“”>
Inserts a header row in a table (unlike tr, this row will be
repeated on every page).

Each tr or thread may have only td as child. td defines a table cell.
Note, that unlike the HTML td element, the report td cannot span
over multiple columns and/or rows.

<td bgcolor=“” border=“” align=“left|right|center”
units=“” width=“”>
The td tag will hold the actual data. Unlike HTML, the report data
cells do not expand automatically to hold the text. You must specify
either a fixed width or a number of units used. For example, if a td
uses one unit (units=“1”) and another one uses two units, it would
make the second cell twice as big as the first unit. td also inherits all
of the p attributes.

552CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

A simple table could be created as:

<report>

[...]

<body>

<table width="100%" border="2pt solid red">

<thead bgcolor="#A0A0A0">

<td align="left" units="1">Index</td>

<td align="center" units="3">Name</td>

<td align="right" units="2">Value</td>

</thead>

<tr>

<td align="left">1</td>

<td align="center">Eddie</td>

<td align="right">1000000</td>

</tr>

<tr>

<td align="left">2</td>

<td align="center">Maria</td>

<td align="right">2000000</td>

</tr>

</table>

</body>

</report>

The result is shown in figure 16.5.

<pie width=“” height=“” from=“” field=“” value=“” />
Inserts a data-aware pie chart using the given data as source (from),
mapping the values of field to value attribute. In other words, the
field attribute sets the legend (caption) and the value attribute
selects the actual column value. Assuming that an entity called
Student is defined, and it has at least one member, called Sex
(combo or radio, selecting M or F), a minimal example, without any
parameters would be:

<?xml version="1.0"?>

<report>

<datasource>

<data query="SELECT COUNT(*) AS cnt, sex FROM student

GROUP BY sex" result="report1" />

</datasource>

<body>

<title>Male/Female ratio of students</title>

16.8. ADVANCED REPORTS 553

<pie width="500" height="300" from="report1"

field="sex" value="cnt" />

</body>

</report>

The output is shown in figure 16.6.

<chart type=“area|line” width=“” height=“” from=“” field=“” />

Inserts a data-aware line chart using the given data as source (from).
The from attribute is the legend or series names. Each chart must
have at least one carrier child node.
<carrier from=“” field=“” axis=“” color=“”> describes the
line(s) available on the chart. The from attribute refers the data
source, the field attribute gives the y coordinate and the axis
attribute gives the x coordinate.

<?xml version="1.0"?>

<report>

<datasource>

<data query="SELECT TrafficDirection, Day, Duration

FROM phone_call" result="report1" />

</datasource>

<body>

<chart type="area" width="1000" height="500"

from="report1" field="TrafficDirection">

<carrier from="report1" field="Duration" axis="Day"/>

</chart>

</body>

</report>

The output is show in figure 16.7.

<if condition=“”>
Checks for a specific Concept condition, for example:

<report>

[..]

<if condition="Misc::CheckCondition()">

<notify>Warning: Condition is not met</notify>

</if>

[..]

</report>

554CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Where CheckCondition is a function implemented by the developer.
If Misc::CheckConditions returns non-zero, the given message will be
shown to the user.

<abort>
Aborts the report generation with the given message, for example:

<report>

[..]

<if condition="Misc::CheckCondition()">

<abort>The report could not be generated</abort>

</if>

[..]

</report>

<notify>
Shows a message to the user, without aborting the report generation.

<xsl-fo> xmlns:fo=”http://www.w3.org/1999/XSL/Format”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
The xsl-fo tag enables the use of actual XSL-FO code. The data set
is automatically given by Gyro as the input XML.

1 <report>

2 <datasource>

3 <data query="SELECT * FROM student" result="report1" />

4 </datasource>

5 <body>

6 <xsl-fo xmlns:fo="http://www.w3.org/1999/XSL/Format"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

7 <fo:table>

8 <fo:table-column column-width="25mm"/>

9 <fo:table-column column-width="50mm"/>

10 <fo:table-column column-width="25mm"/>

11

12 <fo:table-header>

13 <fo:table-row>

14 <fo:table-cell>

15 <fo:block font-weight="bold">Number</fo:block>

16 </fo:table-cell>

17 <fo:table-cell>

18 <fo:block font-weight="bold">Student

name</fo:block>

19 </fo:table-cell>

16.8. ADVANCED REPORTS 555

20 <fo:table-cell>

21 <fo:block font-weight="bold">Sex</fo:block>

22 </fo:table-cell>

23 </fo:table-row>

24 </fo:table-header>

25

26 <fo:table-body>

27 <xsl:for-each

select="ReportXML/Data/report1/array">

28 <fo:table-row>

29 <fo:table-cell>

30 <fo:block><xsl:value-of

select="position()"/></fo:block>

31 </fo:table-cell>

32 <fo:table-cell>

33 <fo:block><xsl:value-of

select="name"/></fo:block>

34 </fo:table-cell>

35 <fo:table-cell>

36 <fo:block><xsl:value-of

select="sex"/></fo:block>

37 </fo:table-cell>

38 </fo:table-row>

39 </xsl:for-each>

40 </fo:table-body>

41 </fo:table>

42 </xsl-fo>

43 </body>

44 </report>

The report input XML generated by Gyro will always have the
following structure:

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ReportXML>

3 <Data>

4 <report1>

5 <array>

6 <id>2</id>

7 <name>Maria</name>

8 <sex>F</sex>

9 </array>

10 <array>

11 <id>3</id>

556CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

12 <name>John</name>

13 <sex>M</sex>

14 </array>

15 </report1>

16 </Data>

17 </ReportXML>

XSL-FO code may call any function implemented in the Misc class,
for example, line 33 of the given report may be replaced with:

<fo:block><xsl:value-of

select="csp:Misc.ToUpper(name)"/></fo:block>

Where ToUpper is defined in Misc as:

class Misc {

static ToUpper(string name) {

return ToUpper(name);

}

}

The ”csp:” prefix, short from Concept Server Page, will cause a call
to the given Concept function. All of the function parameters will be
given as strings. The function may return a string, number or an
array.

Figure 16.5: Report table example

16.9 Sub-applications

A Gyro application may have one ore more sub-applications or child
applications. Each child application is an independent application, using
the same database as the mother application. The developer can which
entities and/or members, actions, events and reports are available to the
child application. All the child applications are generated in the solution

16.10. APPLICATIONS DIAGRAMS 557

Figure 16.6: Report pie chart

sub-folder of the mother application. Gyro will also generate an interface,
allowing the user to select a child application or the full application.

Each child application has some specific properties, with identical behavior
as the mother application.

The only child application specific property is Single entity mode.
When this is set to refer an existing entity, the child application will
automatically open the master view of the selected entity, in full screen,
without allowing the user to open any other views.

16.10 Applications diagrams

Gyro can generate a diagram describing the application. A diagram will
contain basic information about the entities, members and relation.
Diagrams are useful when analyzing and discussing data models with other
developers and/or clients. A sample diagram is shown in figure 16.9. There
are a few conventions used on these diagrams:

light red background
The member using the light red is the representative(or quick search)
member of the entity.

558CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Figure 16.7: Report chart

Figure 16.8: XSL-FO example output

16.11. TOUCH SCREENS 559

light green background
The member is a relation.

dark red dot
The member is a mandatory.

line ending in B, connecting a member with an entity
The member describes an exclusive relation with an entity.

line ending in C, connecting a member with an entity
The member describes a non-exclusive relation with an entity.

16.11 Touch screens

By enabling the touch screen support for a gyro application, by setting the
“Optimize for touch screen” application property to Yes, either a numeric
pad or an on-screen keyboard will be provided to the end-user. Also,
setting this property, will cause Gyro to generate slightly larger buttons for
easy touching.

The on-screen keyboard (figure 16.10) will be available by pressing a
special icon contained in the edit field, giving the user a chance to use the
native operating system keyboard. The numeric keypad (figure 16.11)
however, will be displayer just by focusing the data field.

16.12 Phone and tablet interface

If “Generate mobile version” property is set to Yes, Gyro will generate a
mobile version of the application that can be opened by the Concept
Client for Android and iOS. At the time this book was written, there are 3
mobile client version, running on Android 2.3.x, Android 4.x or iOS 7.0 or
grater. There are some plans for supporting Windows Phone and some
Smart TV operating systems.

The Gyro application mobile version has a different access point from the
standard desktop version. Assuming that an application names CRM has
the following entry point:

560CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

F
igu

re
16.9:

G
y
ro

d
iagram

16.12. PHONE AND TABLET INTERFACE 561

Figure 16.10: On screen keyboard

Figure 16.11: Numeric keypad

562CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Figure 16.12: Gyro application running on iOS 7

concept://serverhost/MyProjects/CRM/CRM.con

The entry point for the mobile application is:

concept://serverhost/MyProjects/CRM/m.con

Note that m.con, located in the application directory must be compiled
manually, by running (in the generated application directory):

accel m.con

16.13. APPLICATION .INI FILES 563

The application can then be loaded on an iPhone/iPad or Android phone
or table by specifying the link (replacing serverhost with your server host
name or ip). The application described by the diagram shown in
figure 16.9 should look similar to figure 16.12.

16.13 Application .ini files

Each Gyro-generated application will have an .ini file in the root directory,
for setting up the database connection.

The ini file is named after the selected database engine, for example, for
MySQL it is called MyDataBase.ini, for SQLite it is called SLDataBase.ini,
for PostgreSQL PQDataBase.ini, Firebird is FBDataBase.ini, Mongo is
MongoDataBase.ini and ODBC it is simply DataBase.ini.

An example ini generated by Gyro for a MySQL-based application, would
be:

MyDataBase.ini

[DataSource]

DataBase = "BasicOrganizer"

Host = "localhost"

Port = 3306

Schema = ""

Username = "root"

Password = ""

; Folder used to keep large files, if necessary

LargeFilesFolder= "datastore"

IndexFolder = "dataindex"

CacheFolder = "cache"

; Memcached server

UseSuperCache = 1

MemCachedServer = "localhost"

MemCachedExpire = "3600"

; Spell checker

Language = "en_US"

564CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Where DataBase, Host, Port, Username and Password describe the
database server connection.

LargeFileFolder sets the directory to be used for storing blobs, if the
developer opted for storing files and multimedia content on disk instead of
the database.

IndexFolder sets the directory for the Xapian database, if enabled. Cache
folder is the directory to be used for image caching (only for web
applications).

If UseSuperCache is set to 1 (0 is for disabled), the application will cache
its data on a memcached server located at the address specified by
MemCachedServer. The MemCachedExpire sets the data timeout.

Finaly, if spell checker is used, the Language parameter sets the used
dictionary. Note that Gyro provides only the en US, en GB and ro RO
dictionaries. For other languages you must find an appropriate dictionary
and put the files into the res directory of your application (an .aff file and
a .dic file, for example de DE.aff and de DE.dic).

16.14 Data migration

In some case, a database server will need replace. For example, an
application using MySQL may need migrating to a PostgreSQL server or
Firebird. The application can be simply regenerated, by selecting a new
database connection method and a new set of database rules. This will
change the database server used by the application, but will not migrate
the data contained on the old server.

For that, a directory called migrate is created on the application root,
containing a few scripts for migrating data from the current database to a
new supported database engine. Note that migration from SQL to NoSQL
or vice versa is not yet supported.

The directory will contain multiple sets of scripts and ini files for various
database engines. For example, assuming that an application is using
MySQL and needs to be ported on PostgreSQL,
migrate/MigratePQDataBase.ini and migrate/MigratePostgreSQL.con will

16.15. WEB INTERFACE 565

be used. The ini file will point to the new database in which the current
data, referred by the application ini file, located in the application root - in
our case MyDataBase.ini, is to be written. The developer should set the
new server, database name, user and password for the new database, and
then simply run MigratePostgreSQL.con and wait for the data to be
copied.

Note that for PostgreSQL and Firebird the ID sequences/generators for
each entity must be initialized manually. Also, the table structures in the
new database must exist and contain no elements. For this, in many cases,
the developer will need to generate and run the new application before
migrating the data, resulting in data structure creation. In this case, Gyro
will keep the previous data migration scripts in a directory called
migrate.previous. This being the case, the scripts in migrate.previous
should be used instead of the ones in migrate.

16.15 Web interface

If the “Generate traditional Web 2.0 interface” is set to Yes, GyroGears
will generate a web application that can be opened from a web browser.
Note that if the “Generate Web 2.0 sign up” is also set to Yes, a sign-up
script will be generated, allowing anonymous users to register themselves.
The web application root will be in the web20 directory of the generated
Concept application. Unlike the concept:// application, multiple files will
be created. For compiling a web application, the script
Application.Make.con must be run, for example:

concept Application.Make.con

The ini file used by the web application is located in the web20/ini
subdirectory, instead of the root directory. As a note, is better to limit via
the Apache .htaccess or similar mechanisms the access to the ini directory
for the web server.

This will compile all the sources generated by Gyro for the web
application. All the application web scripts are based on XML, an XSLT
template and an XSLT processor for producing XHTML output.

566CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Figure 16.13: XML and XSLT producing XHTML (Attribution: Dreftymac
at en.wikipedia)

A Gyro web application may be accessed by opening from a web browser:

http://hostname/ApplicationName/web20/

Assuming that the web server document root is set to Concept’s
MyProjects directory. hostname should be replace with the web server’s
host name, for example, localhost:8080, and ApplicationName is the Gyro
application name, for example, CRM. In this case, the link should be:

http://localhost:8080/CRM/web20/

For each entity, gyro will generate two .csp (Concept Server Page) scripts,
called EntityName.csp and EntityNameList.csp, where EntityName is
the normalized name of the entity. For example, for an entity called
Contact, Contact.csp and ContactList.csp will be generated in the web20
directory. Also, in the web20/tpls, three XSLT templates will be generated,
EntitName.edit.xslt (the editing template), EntityName.xslt (object view
template), EntityName.list.xslt (the object view template). These are
automatically generated by Gyro, using a minimal template, but in
practice, the XSLT will be created by a front-end web developer and/or an

16.15. WEB INTERFACE 567

web designer.

*List.csp is the master object view equivalent from the concept://
application. Every *List.csp script has the following parameters (that can
be sent via GET or POST):

q
The search query used for retrieving the objects. This will perform a
database search or an probabilistic(Xapian) search on the entity
objects, using the query string.

u
Filter the data using the given user id. If u is set to -1 (default),
objects from all the user will be returned.

noheader = 0|1
If set to 1, will skip the Javascript headers for the generated
document.

page
Selects the given page, starting from 1.

pagesize
Sets the number of objects per page (default is Page size property of
the entity).

json = 0|1
If set to 1, it will return the view in JSON format.

format
This parameter is transparently passed to the XSLT template. This
will enable the developer to generate different documents based on
the given format. However, format=xml is reserved. In this case, the
script will return the input XML, without doing any XSLT
processing. This is very useful for debugging or creating APIs for
third-party software.

sort
Sets the field name used for sorting, if the “Use in sorting” flag is set.
For example, if you want to sort objects by a field called
Email address, sort=Emal address should be used

568CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

desc = 0|1
If set to 1, the objects will be sorted in descending order.

xslt
Sets an alternate custom template to be used, for example,
xslt=tpls/CustomTemplate.xslt will perform the transformations
using the given file.

REDIRECT
Force a redirect after a given operation succeeds.

parent level
If set to 1 ore more, the retrieved objects will contain references to
the parent object (if any). If set to 2, it will also retrieve the parent’s
parent, and so on.

related level
If set to 1 ore more, the retrieved objects will contain references to
all its child objects (if any). If set to 2, it will also retrieve the
children of each child, and so on.

related pagesize
Sets the child relation page size (useful if related level is set to 1 ore
more). Default is the related entity page size (usualy 50 objects).

related page
Selects the child page, starting from 1.

fullusers = 0|1
Instead of having references for each owned object to the user id, it
will return a full record referencing the owner user, containing all the
user information, except password.

just
Optinal parameter for selecting the fields to be retrieved for the
given list. If is not set, all the fields fill be retrieved. All the objects
must reference the entity normalized name and member name,
separated by dot, in a list separated by comma. For example, for an
entity called Contact (Name, Email, Address, Notes), if only the
Name and Email fields are wanted, just can be set to
just=contact.name,contact.email. This is especially useful when
related level is set to 1 ore more, and not all the relations are needed,
reducing the document generation time.

16.15. WEB INTERFACE 569

filter1,op1,val1...filterN,opN,valN
filters enable the use of advanced filters (for members having the
advanced search flag set to true). Each filter must be given as a
filter, op, val pair. For example, assuming that an entity having a
member called Date is defined, and in a page the objects with date
between ”2014-01-01” and ”2014-02-01” is needed. For this, the
following parameters could be used:
filter1=date&op1=%3E%3D&value1=2014-01-01
&filter2=date&op2=%3C&value1=2014-02-01

Note that %3E%3D is the URL encoded version of >= and %3C is
the encoded version of <.

For relational filters, value1 may contain multiple values separated by
comma, for example: filter1=city&op1=%3E&value1=1,2,3 it will
search of all the objects having the City member related with City
objects having 1, 2 or 3 as ID.

Any other parameter will be transparently passed to the XSLT template (a
developer may add any number of parameters).

Assuming that we defined an entity called Contact, a request to:

http://localhost:8080/Organizer/web20/ContactList.csp?format=xml

Will output:

<?xml version="1.0" encoding="UTF-8"?>

<HTMLContainer>

<LoggedIn>0</LoggedIn>

<UID>-1</UID>

<ScriptID>ContactList</ScriptID>

<Username/>

<PrevLink/>

<NextLink/>

<PageLink>

<number>0</number>

</PageLink>

<Page>1</Page>

<TotalPages>1</TotalPages>

<PageSize>50</PageSize>

<Criteria/>

<Sort/>

570CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

<Desc>0</Desc>

<Count>2</Count>

<Format>xml</Format>

<RelatedPage>1</RelatedPage>

<RelatedPageSize>50</RelatedPageSize>

<Response/>

<Redirect/>

<Template>tpls/Contact.list.xslt</Template>

<Caller/>

<IsChildOf/>

<NoHeader>0</NoHeader>

<Message/>

<Op/>

<LinkHint/>

<Key/>

<Title/>

<Settings/>

<Data>

<Contact>

<__DBID>4</__DBID>

<__OUID>1</__OUID>

<__MUID>1</__MUID>

<__VIEWINDEX>1</__VIEWINDEX>

<__EVENINDEX>1</__EVENINDEX>

<Name>Mister Spock</Name>

<Photo/>

<Photo_filename>clip1394010172.jpeg</Photo_filename>

<Photo_thumbnail/>

<Photo_preview/>

<Phone>+888135116829</Phone>

<Email>spock@vulcan.vl</Email>

<Contact_region>Region 2</Contact_region>

<Contact_city>My city</Contact_city>

</Contact>

<Contact>

<__DBID>3</__DBID>

<__OUID>1</__OUID>

<__MUID>1</__MUID>

<__VIEWINDEX>2</__VIEWINDEX>

<__EVENINDEX>0</__EVENINDEX>

<Name>Zoe Doe</Name>

<Photo/>

<Photo_filename>Picture 321.jpg</Photo_filename>

<Photo_thumbnail/>

<Photo_preview/>

16.15. WEB INTERFACE 571

<Phone>+22 12312312</Phone>

<Email>jane@mail.com</Email>

<Contact_region>Region 2</Contact_region>

<Contact_city>My city</Contact_city>

</Contact>

</Data>

<SecondaryData/>

<QueryParameters>

<format>xml</format>

</QueryParameters>

</HTMLContainer>

Note that the <Settings> will contain references to all the entities with
the “Is settings entity” set to Yes.

The resulting web page can be requested by using:

http://localhost:8080/Organizer/web20/ContactList.csp

The output is shown in figure 16.14. Note that the application uses a
standard template. For production, an application custom template is
recommended. More information about XSLT are widely available on the
Internet, for example http://www.w3schools.com/xsl/.

The generate XSLT template, tpl/Contact.list.xslt can be used as a
template for changing the design of the web page. It can be either be
replaced with the new template or use the xslt paramter:

http://localhost:8080/Organizer/web20/ContactList.csp?xslt=tpls/template.xslt

A call to a concept function defined in Utils, WebUtils, Misc, Main or
specific WU * classes can be made from an XSLT template. WU is short
from Web Utils.

For example (for a complete list, check the Utils.con file, located in the
generate application web20/include directory):

// forces a log out operation

csp:WebUtils.LogOut()

// returns the current date as a string

csp:Utils.DateNow()

572CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Figure 16.14: ContactList.csp output in an web browser

16.15. WEB INTERFACE 573

For WU * specific function, the following functions are useful in templates:

csp:WU_EntityName.View(page=0, pagesize=50, criteria="",

sort_field="", desc=0, UID=-1, GID=-1, show_archive=0,

no_blobs=2, do_format=1, do_html_escape=1);

This will return an array containing all the elements matching the given
criteria.

For relational members:

csp:WU_EntityName.GetMemberName(page=0, pagesize=50, criteria="",

sort_field="", desc=0, UID=-1, GID=-1, show_archive=0,

no_blobs=2, do_format=1, do_html_escape=1);

Entity should be replaced with the entity normalized name, and
MemberName with the member normalized name.

For example, if entity is called Contact and a relation member to some
notes is called Notes, the function names will be csp:WU Contact.View()
and csp:WU Contact:GetNotes(id).

Note that when invoking a Concept function from XSLT, you cannot use
true or false. Instead you should use 1 for true and 0 for false.

The EntityName.csp script will view or edit a specific object. The
GET/POST parameters are:

id
The id of the object to show.

REDIRECT
Force a redirect after a given operation succeeds.

op = add|new|del|arc|unarc
Performs a specific operation on the given object identified by id,
assuming that the logged user has enough rights.

op values are:

add Updates the current object into the database. The member
values are sent via GET or POST to the EntityName.csp script,

574CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

and must use the normalized member names (case-sensitive).
For example, if an entity has two fields, Name and E-mail, the
application must send via GET or POST variables named
“Name” and “E mail” having the new value that needs to be
updated.

new Creates a new object without writing it in the database

del Deletes the object specified by id

arc Archives the object specified by id

unarc Unarchives the object specified by id

After a successful operation, the user will be redirected to the
address specified by the REDIRECT parameter, if set.

k
For objects having a representative member marked as unique, k
(key) will retrieve an object based on the member value, instead of
using the id. For example, if an entity called Contact will have a
representative member called Name that is also marked as unique,
instead fo loading Contact.csp?id=4 a call to
Contact.csp?k=Mister%20Spock will result in opening the same
record, without exposing the ip in the address.

w
A reference to the parent script, for example Parent.csp. This is
useful only when a link to the parent is needed in a form.

p
The parent id, if needed in the XSLT.

with links
Add references to current logged in user in the input XML.

noheader = 0|1
If set to 1, will skip the Javascript headers for the generated
document.

format
This parameter is transparently passed to the XSLT template. This
will enable the developer to generate different documents based on
the given format. However, format=xml is reserved. In this case, the
script will return the input XML, without doing any XSLT

16.15. WEB INTERFACE 575

processing. This is very useful for debugging or creating APIs for
third-party software.

xslt
Sets an alternate custom template to be used, for example,
xslt=tpls/CustomTemplate.xslt will perform the transformations
using the given file.

related level
If set to 1 ore more, the retrieved objects will contain references to
all its child objects (if any). If set to 2, it will also retrieve the
children of each child, and so on.

related pagesize
Sets the child relation page size (useful if related level is set to 1 ore
more). Default is the related entity page size (usualy 50 objects).

related page
Selects the child page, starting from 1.

fullusers = 0|1
Instead of having references for each owned object to the user id, it
will return a full record referencing the owner user, containing all the
user information, except password.

just
Optinal parameter for selecting the fields to be retrieved for the
given list. If is not set, all the fields fill be retrieved. All the objects
must reference the entity normalized name and member name,
separated by dot, in a list separated by comma. For example, for an
entity called Contact (Name, Email, Address, Notes), if only the
Name and Email fields are wanted, just can be set to
just=contact.name,contact.email. This is especially useful when
related level is set to 1 ore more, and not all the relations are needed,
reducing the document generation time.

A call to:

http://localhost:8080/Organizer/web20/Contact.csp?id=4&format=xml

Will result in:

576CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

<?xml version="1.0" encoding="UTF-8"?>

<HTMLContainer>

<LoggedIn>0</LoggedIn>

<UID>-1</UID>

<ScriptID>Contact</ScriptID>

<Format>xml</Format>

<RelatedPage>1</RelatedPage>

<RelatedPageSize>50</RelatedPageSize>

<Template>tpls/Contact.xslt</Template>

<NoHeader>0</NoHeader>

<Op/>

<Title>Mister Spock</Title>

<CanAdd>0</CanAdd>

<CanModify>0</CanModify>

<CanDelete>0</CanDelete>

<CanArchive>0</CanArchive>

<Data>

<__DBID>4</__DBID>

<__OUID>1</__OUID>

<__MUID>1</__MUID>

<__VIEWINDEX>1</__VIEWINDEX>

<Name>Mister Spock</Name>

<Photo/>

<Photo_filename>clip1394010172.jpeg</Photo_filename>

<Photo_thumbnail/>

<Photo_preview/>

<Phone>+888135116829</Phone>

<Email>spock@vulcan.vl</Email>

<Contact_region>Region 2</Contact_region>

<Contact_city>My city</Contact_city>

</Data>

<SecondaryData/>

<QueryParameters>

<id>4</id>

<format>xml</format>

</QueryParameters>

</HTMLContainer>

And the corresponding web page:

http://localhost:8080/Organizer/web20/Contact.csp?id=4

16.15. WEB INTERFACE 577

Figure 16.15: Web object instance output

Resulting in the output shown in figure 16.15.

If the editing template was to be selected (or the modify button pressed),
assuming that the user is logged in and has editing rights, a call to:

http://localhost:8080/Organizer/web20/Contact.csp?id=4&xslt=tpls/Contact.edit.xslt

Will result in the output shown in figure 16.16.

For file, multimedia and picture members, Gyro will generate an additional
script, called getEntityMember.csp, where Entity is the entity’s normalized
name and Member the member normalized name.

The GET/POST parameters are:

id
The id of the object. Applies to file, multimedia and picture.

thumb = 0|1
If set to 1, it will return the thumbnail picture. Applies to
multimedia and picture.

578CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Figure 16.16: Object editing

preview = 0|1
If set to 1, it will return the preview picture. Applies to multimedia
and picture.

w
Returns the picture at the given width. Applies to multimedia and
picture.

h
Returns the picture at the given height. Applies to multimedia and
picture.

crop = 0|1
If set to 1, the picture will be cropped in order to have the requested
width and height (w and h). If set to 0 (default), the picture will be
resized without deforming it (best-fit). Applies to multimedia and
picture.

Note that for w, h and crop parameters to work, special directories must
be created in the cache directory, giving permissions to the system to

16.15. WEB INTERFACE 579

process the image at the given size. This is for avoiding attacks that could
request a huge amount of pictures at various size, overloading the CPU.

The default cache directory is cache, in web20. This directory could be
changed by editing the application .ini file and changing the CacheFolder
to a new relative location.

Assuming that the entity Contact has a picture member called Photo. The
script name will be getContactPhoto.csp. If images of w=320 and h=240
or w=640 and h=480 pixels in size are needed, in the cache directory, the
following directories should exist:

cache/Contact/Photo/320x240/

cache/Contact/Photo/640x480/

Also, the web server must have rights to write in those directories. Note
that for default sizes (like thumb and preview, the cache directory is not
used).

For multimedia members, a video player script is generated by Gyro, called
ShowEntityMember.csp, where Entity is the entity’s normalized name and
Member the member normalized name. For now, it uses a flash player, but
it will be replaced by a HTML5 video player based on the <video>.

The GET/POST parameters are:

id
The id of the entity having the multimedia member.

noheader = 0|1
If set to 1, will skip the Javascript headers for the generated
document.

xslt
Sets an alternate custom template to be used, for example,
xslt=tpls/CustomTemplate.xslt will perform the transformations
using the given file.

format
This output format (similar to the format parameter of the other
scripts).

580CHAPTER 16. GYROGEARS - THE CAS APPLICATIONGENERATOR

Index

+, 49

++, 42

–, 42

/,%,/=,%=, 50

abs, 229

AccelKey, RMenuItem, 139

acos, 229

AddAttribute, RTreeView, 158

AddChild(), XMLNode, 200

AddChild, RTreeView, 147

AddItem, RTreeView, RIconView,
RComboBox, 147

AddNext(), XMLNode, 200

AddParameter, 236

AddPrev(), XMLNode, 200

ADOConnection, 257

ADODataRecord, 257

ADODataSet, 257

AES, 302

anonymous functions, 83

Arc, 196

arrays, 36

asion, 229

atan, 229

BackgroundImage, RForm, 114

BeginDocumen()t, WebDocument,
211

Binary operators, 48

break, 56

BTSocket, 293

Cache, RWebView, 160
calc, 220
CApplication, 112
Captcha, 358
Caption, RForm, 114
catch, 60
ceil, 229
ChDir(), IO, 184
Check, SpellChecker, 224
CHECK COLUMN, 146
CheckSpell, SpellChecker, 224
Child, XMLNode, 200
chr, 220
CIDE, 21
Circular referrences, 105
CLArg(), 190
class, 65
classof, 45
Clear, RClipboard, 162
Clear, RTreeView, RIconView,

RComboBox, 147
ClearParameters, 236
Closeable, RForm, 114
CloseComport, 233
CloseRead, 236
closure, 83
ColSpacing, RTable, 121
COMBO COLUMN, 146
Concept Application Server, 5
Concept Assembly, 9
Concept CGI, 4
Concept CLI, 4

581

582 INDEX

Concept Client, 17
Concept Client plug-ins, 19
Concept Client shortcut files, 18
Concept Core, 8
Concept data types, 31
Concept programming language, 27
Concept Services, 4
concept:// protocol, 6
CONCEPT FUNCTION, 92
concepts:// protocol, 6
Connection, 235
constructor, 69
Content, WebDocument, 211
Content, XMLNode, 200
ContentLength, URL, 191
ContentType, URL, 191
COOKIE(), 212
CookieVar, 212
Copy(), XMLNode, 200
Copy, RClipboard, 162
crc32, 300
CreateNew(), XMLNode, 200
CreateObject, 175
Creating C/C++ modules, 12
CSV, 193

Data, URL, 191
Databases, 235
DataRecord, 238
DataSet, 236
Decorations, RForm, 114
default, 56
delegates, 40
delete, 46
DeleteItem, RTreeView, RIconView,

RComboBox, 147
DetectLanguage, 227
DirectoryList, 183
DNS, 307
do, 58

DoubleContainerContainer, 111

DoubleMetaphone, 228

DriverOpen, 235

DRM, 351

DRMKey, 300

Duck typing, 79

EDITABLE COLUMN, 146

EndDocument(), WebDocument,
211

EndTransaction, 235

Env, 185

Erase(), IO, 184

Error(), IO, 184

Exceptions, 60

exec, 188

Exec(), IO, 184

ExecuteNonQuery, 236

ExecuteQuery, 236

Exists(), IO, 184

exp, 229

EXPAND, 120

extends, 81

fabs, 229

Face detection, 361

FBConnection, 253

FBDataRecord, 253

FBDataSet, 253

FetchForward, 236

FFMpeg, 358

FieldValues, 236

File, 180

Filename, XMLDocument, 201

FILL, 120

Flip, RImage, 137

fmod, 229

for, 58

FreeImage, 352

FTP, 307

INDEX 583

FullScreen, RForm, 114
function, 67

Garbage Collector, 10
GeoIP, 307
get, 70
GET(), 212
GetAPID, 217
GetChar(), File, 180
GetImageBuffer, RClipboard, 162
GetMember, 175
GetString, File, 180
GetText, RClipboard, 162
GetXPath, XMLDocument, 201

Handle, XMLNode, 200
HasMember, 175
Header(), WebDocument, 211
Headers, URL, 191
Height, RForm, 114
Hello cloud application, 29
Hello world, 28
HIDDEN COLUMN, 146
Hide(), VisibleRemoteObject, 114
hmac 256, 300
hmac md5, 300
hmac sha1, 300
Host, URL, 191
HostRoot, 5
HScrollPolicy, RScrolledWindow,

125
HTTPVersion, URL, 191

if, 54
IM, 307
IMAGE COLUMN, 146
ImageColumn, RIconView, 151
ImageMagick, 354
import, 62
include, 62
indentation, 100

inheritance, 81
IniGet, 187
IniSet, 187
InsertChild, RTreeView, 147
InsertItem, RTreeView, RIconView,

RComboBox, 147
IO, 184
IsRedirect(), URL, 191
IsSuccessfull(), URL, 191

JIT, 11
JIT friendly code, 373
JSONDeserialize, 176
JSONSerialize, 176

KeepAbove, RForm, 114
KeepBelow, RForm, 114
KillThread, 326

lamda functions, 83
Lang, 165
LastError, 235
ldexp, 229
Left, RForm, 114
length, 43
LoadHTML, XMLDocument, 201
LoadResources, RImage, 136
LoadString, XMLDocument, 201
Location, URL, 191
Lock, ReentrantLock, 332
log, 229
log10, 229
logical operators, 50
ltrim, 220

MARKUP COLUMN, 146
MarkupColumn, RIconView, 151
Maximize, RForm, 114
Maximized, RForm, 114
md5, 300
member selector operator, 52

584 INDEX

Memcached, 271

Metaphone, 228

METAR, 307

Minimize, RForm, 114

Minimized, RForm, 114

MkDir(), IO, 184

Mobile devices, 19

Modbus, 307

MongoConnection, 263

MongoCursor, 263

MongoDataSet, 263

MouseCursor, RForm, 114

MouseCursorImage, RForm, 114

Multithreading, 325

Murmur, 300

MyConnection, 250

MyDataRecord, 250

MyDataSet, 250

Name, File, 190

Name, XMLNode, 200

naming, 104

new, 45

Next, XMLNode, 200

NORMAL COLUMN, 146

null-coalescing operator, 51

number format, 229

numbers, 32

NuoConnection, 262

NuoDataRecord, 262

NuoDataSet, 262

objects, 39

OCR, 197

OnButtonPress, 114

OnClicked, RButton, 132

OnClicked, RToolButton, 140

OnEndEditing, RTreeView, 158

OnHide, 114

OnInterAppMessage, CApplication,
217

OnKeyPress, 114
OnNavigationRequested,

RWebView, 160
OnRealize, 114
OnShow, 114
OnStartEditing, RTreeView, 158
OnSwitchPage, RNotebook, 126
Opacity, RForm, 114
OpenComport, 233
OpenCV, 361
operator overloading, 77
Operator precedence, 49
Optimal loops, 366
Opus, 336
ord, 220
Orientation, RToolbar, 142
override, 74

Packing, 120
Parent, XMLNode, 200
Path, XMLNode, 200
PBKDF2, 300
PDFAttachments, 359
PDFFindText, 359
PDFImage, 359
PDFImageBuffer, 359
PDFLoad, 359
PDFLoadBuffer, 359
PDFPageCount, 359
PDFPageText, 359
PERCENT COLUMN, 146
pipe, 188
POLICY ALWAYS, 125
POLICY AUTOMATIC, 125
POLICY NEVER, 125
PollComport, 233
POP3, 307
POpen, File, 190

INDEX 585

PopupMenu, VisibleRemoteObject,
139

Pos, 220
POST(), 212
pow, 229
PQConnection, 242
PQDataSet, 242
PQRecord, 242
Prev, XMLNode, 200
PrimaryIcon, REdit, 131
private, 72
properties, 70
Properties, XMLNode, 200
protected, 72
public, 72
PutHeader(), WebDocument, 211

RADIO COLUMN, 146
rand, 229
RButton, 111, 132
RCheckButton, 132
RCheckMenuItem, 138
RClipboard, 162
RComboBox, 145
Read, File, 180
ReadFile, 180
REdit, 128
REditComboBox, 145, 152
ReentrantLock, 332
RemoteContainer, 111
Remove(), IO, 184
RemoveCookie, 212
Resizable, RForm, 114
Response, URL, 191
Restore, RForm, 114
RExpander, 111
RForm, 111
RFrame, 111
RHPaned, 112
RIconView, 145

RImage, 135
RImageMenuItem, 138
RLabel, 128
RmDir(), IO, 184
RMenuBar, 138
RMenuItem, 138
RNotebook, 125
Root, XMLDocument, 201
Rotate90, RImage, 137
round, 229
RouterOS, 307
RowSpacing, RTable, 121
RPaned, 112
RRadioButton, 132
RRadioMenuItem, 138
RRadioToolButton, 139
RSA, 303
RScrolledWindow, 124
RSeperatorMenuItem, 138
RTable, 111, 120
RTearoffMenuItem, 138
RTextView, 128
RToggleToolButton, 139
RToolbar, 139
RToolButton, 139
RToolSeparator, 139
RTreeView, 145
rtrim, 220
RunThread, 326
RVBox, 111
RVPaned, 112
RWebView, 160

SaveString, XMLDocument, 201
ScondaryIcon, REdit, 131
Screen, RForm, 114
SearchColumn, RTreeView, 148
Seek, File, 183
Semaphores, 331
SendAPMessage, 217

586 INDEX

SendComport, 233
SendMessage, 7
Serializable, 169
Serialize, Serializable, 169
ServerRoot, 5
ServerVar, 212
SessionID(), WebDocument, 211
SessionVar, 212
set, 70
SetCookieVar, 212
SetMember, 175
SetSessionVar, 212
sha1, 300
sha256, 300
Show(), VisibleRemoteObject, 114
SHRINK, 120
Sieve benchmark, 377
sin, 229
SingleContainer, 111
SIP, 307, 341
SkipTaskbar, RForm, 114
SLConnection, 246
SLDataRecord, 246
SLDataSet, 246
SMTP, 307
SOAP, 307
Soundex, 228
Speex, 336
SpellChecker, 224
sqrt, 229
srand, 229
StartTransaction, 235
Stat(), IO, 184
static, 72
static C functions, 87
static C wrappers, creation, 92
static members, 73
Status, WebDocument, 211
Stock images, 135
strings, 33

StrNumberSplit, 220

StrReplace, 220

StrSplit, 220

SubStr, 220

Suggest, REdit, 131

Suggest, SpellChecker, 224

SuggestModel, REdit, 131

Supported platforms, 15

SVG, 355

SVGT, 356

switch, 55

tan, 229

TCPSocket, 279

TextColumn, RIconView, 151

throw, 60

TLSSocket, 289

ToArray, 175

ToBuffer(), DataRecord, 238

ToLower, 220

ToNumber(), DataRecord, 238

TOOLBAR BOTH, 142

TOOLBAR BOTH HORIZ, 142

TOOLBAR ICONS, 142

TOOLBAR TEXT, 142

Top, RForm, 114

ToString(), DataRecord, 238

ToUpper, 220

ToXML, 174

trim, 220

try, 60

Twitter, 307

typeof, 44

UDPSocket, 283

unary operators, 42

UNIXSocket, 286

Unlock, ReentrantLock, 332

UnSerialize, Serializable, 171

INDEX 587

UpdateItem, RTreeView,
RIconView, RComboBox,
147

URL, 191
UseSessions, WebDocument, 211
UTF8Length, 220
UTF8ToLower, 220
UTF8ToUpper, 220

var (members), 66
VARS(), 212
virtual members, 74
Visible, VisibleRemoteObject, 114
VScrollPolicy, RScrolledWindow,

125

WaitMessage, 7
WaitThread, 326
WebDocument, 210
WebVar, 212
while, 57
Width, RForm, 114
WolframAlpha, 307
Working with C arrays, 95
Working with C objects, 97
WriteFile, 180

XAlign, RLabel, 128
Xapian, 274
XMLDocument, 200
XMLNode, 200
XSLT, 204
XSLTError, 205
XSLTProcess, 205
XSLTRegister, 205

YAlign, RLabel, 128

